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Several families of multivariable, biorthogonal, partly continuous and partly discrete, Wilson
polynomials are presented. These yield limit cases that are purely continuous in some of the
variables and purely discrete in the others, or purely discrete in all the variables. The latter are
referred to as the multivariable biorthogonal Racah polynomials. Interesting further limit cases
include the multivariable biorthogonal Hahn and dual Hahn polynomials.

. INTRODUCTION

The Wilson polynomials’? are a very general family that include as special or limiting cases all the classical orthogonal
polynomials and many related families. They can be expressed as the following ,F, hypergeometric series:*
—nn+a+b+c+d— 1,a—ix,a+ix.1)

a+ba+ca+d )
where a,b,c,d are complex parameters, (a),=I'(n + a)/T"(a) denotes the usual Pochhammer symbol, and » is a non-

negative integer. These are polynomials in x of degree 2n that one can show' are symmetric in all four of the parameters
a,b,c,d. They are associated with the following weight function:

@+ ix)T'(a—ix)T(b+ ix)T'(b—ix)['(c+ ix)T'(¢c — ix)T'(d + ix)I'(d — ix)

P,(x) =(a+b),,(a+C),,(a+d),,4F3( (L1)

= , 1.2
w(x) '(2ix)T( — 2ix) (1.2)
and satisfy a complex orthogonality relation;
J. dx P, (x)P,, (x)w(x) =4,6,,., (1.3)
C

where the normalization constant 4, is given by

FTint+a+b)T(n4+a+c)Tn+a+d)T(n+b+c)T(n+b+d)T(n+c+4d)

A, =d4mn(n+a+b+c+d—1), Tontatbrerd)

(14)

and the contour C is deformed from the real axis so that it separates the increasing sequences of poles of the weight function
from the decreasing sequences.

When the real parts of the parameters a,b,¢,d are positive one can choose C to be the real axis. If in addition the parameters
are real or occur in complex conjugate pairs then the polynomials and weight function are real and the latter is positive. In this
case the Wilson polynomials satisfy a continuous orthogonality relation with respect to a positive measure on the real line. If
the real part of one parameter is less than zero, let us say Re(a) <0, Re(b,c,d) >0(2a,a + b,a+c,a+d #0,— 1, -2,...),
then C must be deformed from the real axis to pass over the decreasing sequence of poles given by x = — ia — ij, j = 0,1,2,...
and under the increasing sequence found at x = ia + i, j = 0,1,2,... . This contour can then be deformed back to the real axis
plus closed loops about a finite number of poles. If the closed loops are then evaluated by the method of residues the inner
product in (1.3) can be written as an integral over the real axis plus a finite discrete sum. In this case the Wilson polynomials
satisfy a partly continuous and partly discrete orthogonality relation

a0 Re(a) j<0
f dx w(x)P,(x)P,, (x) + Zﬂ w()P, (ia + i) P, (ia+ i) =A,8,,,, (1.5)

j=o0
where the discrete part of the weight function @ (j) is given by
Frb—a)YT'(c—a)T(d—a) (2a)j(a + l)j(a + b)j(a + c)j(a + d),
I'(—2a) (@;(a—b+1)(a—c+1),(a—d+1), /1
’ (1.6)

Formula (1.5) also yields a purely discrete orthogonality relation. Takea + b = — A + ¢, where A is a non-negative integer,
divide (1.5) by I'(a+b6) =T'(— A +¢€), and then take the limit é—-0. The continuous term vanishes because
1/T°( — A + €) — 0 but the discrete part survives leaving

w(j) = (4m)'(@a+b)I'(a+c)I'(a+d)
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A
p()P,(ia + §)P, (la+ i) =4,68,,, 0<nm<A, (1.7)
=0

J
where the weight function and normalization constant are given by

_ Qa)(a+1);(—A),(a+c);(at+d)

T (@);2a+A+1)(@a—c+ )(a—d+ 1),

(—A),(a+0o),(a+d),(c—a—A),(d—a—A), (c+d),
(—A+c+d)y,(a—c+y(@a—d+1), '

40

Al=nn—A+c+d—1),2a+1),(1 —c—4d),

(1.8)

The orthogonality relation (1.7) is equivalent to Racah’s orthogonality for what are called Racah coefficients or 6j symbols.
Accordingly the polynomialsin (1.7) are referred to in the literature as the Racah polynomials. It is customary to redefine the
parameters and write these polynomials as

—nmn+a+B+1,—xx+y+6+1 )
= 1 1 5+1 F( ;1) 1.9
r(x)=(@+1),(y+1),(B+8+1),,F, a+ 1B+ 6+ 1y+1 (1.9)
and then the orthogonality relation becomes
A (y+6+1),(#/2+6/2+43/2), (@+ 1), (B+6+1),(y+1),
1 (X)) (%) =2,8,m5
o (248124 172) (y+E—a+ 1) (y—B+1),(5+1).x!
A= a+1),B+1),(y+1),(a—6+1),(a+F—y+1),(B+5+1), (1.10)
(n+a+B+1), T(y+6—a+1)I(—B—a—- DI (y—B+1HI(E+1)
(a+B+2),, Fy+6+2)L(-B/T(y—B—a)T(6—a)
wherea+ 1,8 +6+ l,ory+ 1 = — A, and O<n,m<A.
Two interesting limit cases are the Hahn and dual Hahn polynomials. The limit § — « with ¥ + 1 = — A gives the Hahn
polynomial orthogonality
a D.(—A
5 Ot DB b (0 = 4,8, (111)
=o (—A—=pB)Xx!
where
hy (%) = F(_”’”+a+ﬂ+1’_"-1) 0<n<A
n — 342 a+1,—A s ’ AT
(1.12)
i _((A—n)!n!)((n+a+[3+l)A(ﬁ'+1),,)((A+n+a+ﬂ+1))
" Al (@+1),(B+1), Qnt+a+B+1) /°
Letting f— o in (1.10) with @ + 1 = — A gives the dual Hahn orthogonality
a 6+1 2+6/24+3/2 1
Eo\x) (y/2+8/2+1/2), 5+ 1) (A+y+6+2),
with
—n,—xx+y+6+1 )
= , <As
d,(x) 3F2( Ayt ;1), 0<n
(1.14)
1 __((A—n)!n!)( (Y +8+2), )
i Al Y+ 1,6+ 1D,_,
A generalization of the Wilson polynomials to p variables x,,x,,...,.x,, is given by the following four families:*
X15Xgpees X, | @1305ees, ) [ r T(n, +a; +bk)]
P ad | = A+c)y(4+4d)
(n,,n2,...,np b,b,,....b, i=1  TI(a, +b) N v
xF%SfE“'E%(N_FA +B+c+d—1,4—iX:—n,a, +ix;.; —n,a, + ixp) ’ (1.15)
e A+cA+da,+by.;0,+ b,
= (X1 XX, | 148ass, ) [ 7 T'(n, +a, +bk)]
P( od | = (B+o)n(B+4d)
Byylaseislly | Bybo,..sb, i=1 D(a, + b) v v
N+A+B+c+d~1,B+iX: —n,b, —ix;..;—n,,b, —ix
XF%E?E:::?%( N e e "), (1.16)
o B+cB+da,+by.a,+ b,
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a,,a,,...,.a
By1,bayenb

P

4 I‘(nk + a,; +bk) . .
,d)=[ ](c—zX) (d —iX)
¢ )] B Ty v Y

Q(xl,xz,...,x‘7
Nishayesll,

—N—c—d+1,B+iX:—npa, +ix;..;—n,a, + ix
XF%??%"'E?( . Xt Lt b a P) (117
B —~N—c+iX+1,-N—d+iX+laa +by.5a, + b,
— (X1:X0500 X | 1580500 ) C(n, +a, + k)]
cd | = (c+ iX)ny(d+iX)
Q(n,,nz,...,np by, kr_I, T(a, + by) N v
—N—c—d+1,4—iX:—n,b, —ix;..;—n,,b, —ix
><F§%:ﬁ( ] e rr p) (1.18)
"\ =N—c—iX+1,—N—d—iX+ la, +by.5a, + b,

458
where a,,a,,...,a, bl,bz, .b,,c,d are complex parameters and F_, o

hypergeometric series® defined as
Ayl ﬂ(” ’B(l) B(p) »B(P)'
; o ’ b hid 3
(‘}’1,-~-a7’r= (D, D5 Py Zv2y ,z)
M_, (@), I (B1D);, ._I(B“”) L
% Hz—l(}’l)JHUI 1(§(1))J| ,—1 §(p)) .]l .]2 jp!’

where {j, } denotes summation indices j,/,,....j, that run over all non-negative integers and we have introduced the following
shorthand notation:

X= Zxk, N= an, J= sz’ A= Zak, B= Zbk, (1.20)

k=1 k=1 k=1

’r 7 is the generalized multivariable Kampé de Fériet

(1.19)

and in the absence of specifying the arguments z,,2,,...,Z,, unity is to be understood. The overbars in (1.16) and (1.18) denote
distinct families of polynomials and should not be confused with complex conjugation. The p tuple of non-negative integers
11,M5,-..,1, labels the different polynomials whose degrees are given by 2N where N is defined in (1.20). These polynomials are
associated with the following multivariable weight function:

od )

1 (@ + ix)T (b, —ixk)] I

k=1

ay,a;,...,4,
bl’bZ""’bp

w(x,,xz,...,)_cp

—iX)T(B+iX)T(c+iXh)T'(c —iX)I'(d +iX)I'(d — iX)

: (1.21)
T (2iX)T( — 2iX)

which notice is symmetric under the interchange of ¢ and d as are all four families of polynomials. When no ambiguity arises
we simply write P, (x), P, (x), Q,(x), @, (x), and w(x) for the polynomials and weight function, respectively.
These satisfy the following biorthogonality relations*

P

P, Q,=P,0n=4, [[ bupm» PuPn=0,0,=0 if N#M, (1.22)

k=1

where the normalization constant is given by

I'N+A+)T(N+A4+d)T(N+ B+ ) I(N+B+d)T(N+c+d)
2N+A+B+c+d—-1DI(N+A+B+c+d—1)

2

(1.23)

A,= 2(277')”[ l'p[ F(n, +a, + bk)nk!]
k=1

and for positive real parts of the parameters the inner product is defined as

P,-Q, EJ dxp---J- dx, w(x,  x,)P,(xyx,)Q,,(xy"""x,), Re(a,a,...,,,b,,b,,....b,,¢,d) >0, (1.24)

where the integration contours are simply the real axes.

In Sec. II we extend these purely continuous multivariable biorthogonal Wilson polynomials to several “mixed” cases
where the inner product is partly continuous and partly discrete. In Sec. III we discuss the purely discrete family which are the
multivariable biorthogonal Racah polynomials. Taking appropriate limits then yields multivariable biorthogonal Hahn and
dual Hahn polynomials.

II. MULTIVARIABLE MIXED-TYPE INNER PRODUCTS
The biorthogonality relations (1.22) are still valid for negative real parts of the parameters provided each of the contours
are suitably deformed to separate the increasing sequences of poles of the weight function from the decreasing sequences,
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assuming these two sets are disjoint. However, due to the multiple integrals involved it is not always clear where the poles lie in
each of the variables and what the appropriate contours are.
We consider several specific cases, the first being the following parameter domain:

Re(a,,ay,...,8,,01,05,...,0,,d) >0, Re(c) <0,

2.1
Re(a, +c¢), Re(b;+¢)>0, Re(c), 2¢, ¢c+d+#0,—1,-2,., 2D
for which the x, contour C, is deformed from the real axis to pass above the decreasing sequence of poles given by x, = — X%
—ic — 1j,j = 0,1,2,... and underneath the increasing sequence found at x, = — X4 + ic + ij,j = 0,1,2,..., and also above and

below the remaining decreasing and increasing sequences, respectively. We have introduced the following shorthand notation
to denote partial sums:

14 I'4 7/
X[= DI Aj= Y a, B[= Y by (2.2)
= =g =1}

If we furthermore choose C, sufficiently close to (and under) — X4 + ic and also sufficiently close to (and over) — X% — ic,
then the remaining contours C,,...,C, can be chosen on the real axes.

Let us first demonstrate that this choice of contours leads to the norm of the weight function as given by (1.23) with
N = 0. Making a change of variables from x,,x,,...,x, to X,x,,...,x, and reversing the order of the integrations gives

f dxp“-f dx, | dx,w(x,...x,)
- » — C,

_J dXF(A — X TB+iX)T(c+iX)T(c—iX)T(d + iX)T'(d — iX) (2.3)
c Cix)r'( —2iX) ’

o L] P

— o0 - k=2
where the contour C passes over the decreasing sequence of poles X = — ic — ij, j=0,1,2,... and under the increasing

sequence X = ic + ij,j = 0,1,2,..., and also above and below the remaining decreasing and increasing sequences, respectively.
To evaluate the x,,x,....x, integrations we introduce the following single variable integral formula:*

FNa+ e+ B+yT(B+95)
I'a+B +v+6)
at+y, a+é8, B+vy, B+6+#0,—-1,-2,., (2.4)

f dx (@ + ix)T(B + x)T'(y — ix)T'(8 — ix) = (2m)
B

where the contour C' separates the increasing sequences of poles of the integrand from the decreasing sequences; in the special
case when Re(a,8,7,6) >0, C' can be chosen on the real axis. Returning to (2.3) and recalling that Re(a, + c¢),
Re(b, + ¢) >0, the contour C is assumed to pass sufficiently close to (and over) — ic so that Re(a, + iX) >0 and also
sufficiently close to (and under) + ic so that Re(b, — iX) > 0. In this case formula (2.4) with C' on the real axis and
induction can be used to evaluate the x,,x5,...,x, integrations leading to

o k) P
f dx2-~-f dx, T(a, + iX — iX2)[(b, — iX +iX)| [ T(ax + ix,)T (b, — ixk)]
— - o k=2

I 4+ iX)T'(B —iX)
= (2m)* ‘[ r b ] 2.5
@me=| 1T Fla+ 60 T4+ B (23)
and if this is substituted into (2.3) the norm of the weight function becomes
0 00 P
f dxp---f dx, | dx, w(x,,...,xp)=(21r)"“[1'[ T (a, +bk)][F(A +B)]_'f dXT(4+iX)I'(4 - iX)
- o0 — C, k=1 C
5 LB+ iX)I(B—-iX)I'(c+ iX)T(c—iX)I'(d + iX)['(d — iX) (2.6)

rQix)r(—2x

which is simply proportional to the single variable integral given by (1.2)—(1.4) with n = m = 0. Using this result in (2.6)
then yields the multivariable norm as defined in (1.23) with N =0.

Next we express the multiple integral in the left of (2.6) as a finite discrete sum and integrations over the real axes. This is
achieved by deforming C, to the real axis plus closed loops about a finite number of poles and then evaluating the latter by the
method of residues. This leads to two additional terms involving discrete sums that by using (2.5) one can show are equal. The
norm then becomes
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J dxp---f deJ- dx; w(x;,...,.X,) =J dxp---f dx, w(Xy..sX,)
— o0 — C, - —

Re(c)+]<O
+f dx," f dx, W(X25009X, )5 2.7)

where all the integrals on the right are over the real axes and the “mixed” wexght function in the second term is given by

WXz X,) = (4m)T(ay —c—j— iIX)T(b, + c+j+ iX5) kﬁ T(a, + ix )T (b, — ix, )]
=2
><1"(:‘1 +c+H)TB—c—NLQRc+HNId—c—HTd+c+)) (=1Y _
T'(2c+2))T( —2c—2)) J!
The first purely continuous term in the right of (2.7) is that which arises for positive real parts of the parameters. The second
mixed term represents the contribution arising from the negative real part of the parameter c.
- The inner product of the multivariable Wilson polynomials is defined as

(2.8)

P"'Q",Ef dxp---f dx, Cdx, W(X e esXy )Py (X450 ) @y (X 50X, ), (2.9)

which in analogy with (2.7) can be written as

Pn.Qm=f dxp...f dx,w(x,,...,xp)P,,(xl,...,x,,)Q,,,(xl,...,xp)+J' d"p"'f i,

Re(c) + j<0

X S gy Po( = XE e+ Gy ) O ( — X5 4 i+ XX, ), (2.10)

j=o

and similarly for P,*Q,,, P, 'P,,, and Q, - Q,,. Having verified the norm of the weight function it then follows by the same
proof as for the purely continuous family* that these inner products satisfy biorthogonality relations (1.22).

Formula (2.10) also yields a simpler and even more interesting mixed type inner product. Takec + d = — A, + €, where
A, is a non-negative integer, divide the biorthogonality relations (1.22) by I' (¢ + d) = I'( — A, + €), and then take the limit
€—0. The first purely continuous term in (2.10) vanishes because 1/T°( — A; + €) -0 but the second mixed term survives
leaving (writing x, in place of j )

l
1 1 — 1 1 1
P( > Q( ) J dx J dxz ()(xth,-'-’xp )PEI )(xl’xz’-"axp)an)(xl»xzy--'yxp);
x.=

0

(2.11)
Pf,”‘Q(”=ﬁf,”‘§f.P=/1§,” ﬁ 8y s P(l).ﬁ(l)zgu),é(l):o if N£M
oL M n m n m 4 4

where the mixed weight function and normalization constant are given by

p
wm(xp---,xp) =T(a+d+ A —x,—iX{)T (b, +c+x, +iX5) [ H F(ay, + ix, )T(b, — ixk)]
K=2

(I‘(A +c+x,))(F(B+d+A,—xl))(r‘(l+2d+2A,—2x,))
'4d+¢) (B +d) '(1+2d+2A,—x,)

x( rQ2d+A, - ))(A)( 1y, (2.12)

rd+2A, —2x))

14
AP =(Qmr~! r b ]—-——
( 77-) kl;[] (nk +ak + k)nk (A N)|

FT'(N+A+d)T(N+B+c¢)

(= DY¥A+)y(B+d)y

“@N+tA+Btctd-DIN+A+Brctd—1D 19
and the polynomials are defined as
P(xyX,) =P, ( — X8 +ic + iX,Xp,....%,), N=0,1,2,...,00,
P\(xyx, ) =P, ( — X5 + ic+ iX,,%5,.%,), N=0,12,.,,
(2.14)
Q1 (%X, ) =0, ( — X4 +ic + iX),Xp..%,), OKN<LA,,
-Q—f,”(x,,...,xp )=0,(— X2 +ic+ iX1,%5,...,X,), OKN<A,,
with ¢ + d = — A,. These biorthogonality relations can be verified independently of the limiting procedure. To calculate the
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norm of the weight function one uses (2.4) and induction to perform the x,,x,...,x, integrations and then the following
summation theorem:’

( 2,0+ la+Ba+ya+ 6 .1)
Y \ga—B+la—y+la—6+1’
_T@—-B+Hl@—y+Dl(@a—6+NI(—a—-B—-y—5+1)
Fa+HI(=F—-y+DI(-B-6+ DI (—y—-6+1)
to evaluate the x, sum. Having calculated the norm the biorthogonality relations can then be verified in the same manner as
was proved for the purely continuous family.* Also, some of the original restrictions in (2.1) can be removed from (2.11)
leaving only
Re(ay,a5..8,,01,05..,0,,d) >0, Re(b;4+¢)>0, c+d= —4A, (2.16)

where recall A, i$ a non-negative integer.
We consider a further generalization of (2.11)-(2.14) by also allowing some or all of the @ parameters to have negative
real parts. The parameter domain in this case is defined by

» Re(a+B+y+6)<], (2.15)

Re(a,,a5..,a,) <0, Re(a,, ;,..sa,,b,,..,0,,d) >0,
Re(b,+¢)>0, Re(4] +d)>0, c+d= —A, 2.17)
Re(a,,...,.a,), a,+ by..0a, + 5,40, —1,—2,..., r=12,..p,

for which the contours C,,...,C,, that in (2.11) were on the real axes, are here deformed to pass underneath the increasing
sequences of poles x, = ia, + ij, j, = 0,1,2,....,k = 2,3,...,7, while still passing above the decreasing sequences. We further-
more choose these contours sufficiently close to (and under) ia,, k = 2,3,...,7, sothat Re(a, + d — iX';) >0, which is always
possible in light of the restriction Re(4 | + d) > 0. In this case the remaining contours C, , ,,...,C, can be chosen to lic on the
real axes. The norm of the weight function is calculated in the same manner as was done for (2.11). That is, one uses (2.4) and
induction to perform the x,,...,x,, integrations and then the ;F, summation theorem (2.15) to evaluate the x, sum resulting in
(2.13) with N = 0. Having verified the norm one can then prove the biorthogonality relations (2.11) in the same manner as
was done for the purely continuous family,* but with the more general inner product defined above or as re-expressed in
(2.18).

The contour integrals can be transformed to discrete sums and real integrations by deforming C,,...,C, to the real axes
plus closed loops about a finite number of poles and then evaluating the latter by the method of residues. The inner product of
the polynomials can then be schematically written as

Re(a;) -+ jr<0

P;"'ij’sf dxp“‘j dx, ., (f[ {f dx, + (2wi) D res(x,(-—-:‘ak—{—ij,‘)])
— - o0 k=2 —

Ji=0

4,
X3 (XX, )P L (g%, )@ 1 (XX, ), (2.18)
X =0
and similarly for P{P-Q, PP and Q¢V-Q ), where res(x, ) denotes the residue at x,. The right side of (2.18)
represents a multitude of mixed type terms involving integrations over the real axes and finite discrete sums.
“This example, which is a gemeralization of a limit case of ((2.10) has itself an interesting limit case. Set a, + b, -
= — A, +¢€ k=2,3,..,r, where A, are non-negative integers, divide the biorthogonality relations by II; _,T'(a; + b;)
=M;_,I'( — A, + €), and then take the limit €¢-0. Since 1/T'( — A, + €) -0 the only term in (2.18) that survives is the
one with r discrete sums leaving (writing x.,...,x, in place of j,,..., j, and transforming x, - A, — x,)

S ® A, A, A,
P;Z"ij)sf dxp---f e, ., ¥ 3 ¥ WX, )P P (X150, ) Q@ P (X yenX,),

X, =0 X2 =0x,=0

, (2.19)
—_ = p — —
PP-QP=PP QY =i D [] by POPP=0PBP =0, if N£M,
k=1

where the weight function, normalization constant, and polynomials are given by
w?(x,,...,%,)

r (A p
=[H( k)][ H I‘(ak+ixk)r(bk—-—ixk)]r(z4§+d+X;—in+|)F(B{+c+A{ - X7 4+iXe, )

k=1 \Xg k=r41
(P(A+c+A,—x,))(r(8+d+xl>)( (1 +2d +2x,) )(r(2d+x,))(_1)A...x, (2.20)
(4 +c) I'(B+d) T(142d+ A, +x,)/ \I'(2d + 2x,) ’

r

Al n '
AP = Q27)"T(n, +a +bn)nn![ I _...__"_.)Tnk!( -1 ‘] [ I T +a +bk)nk!}

k=2 (Ak—ﬂk k=741
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Al T(N+A+d)T(N+B+c¢
X E gy (DA OBt dy +B-|(—cidj-l))l"((N:A :B)+ T (2.21)
PP (Xyx, ) =P, (—id; —iX [ — X2 | —id,iay + ixy,....ia, + iX,,X, , 150sX,)s
PP (xyx,) =P, (—id5 —iX] — X2 | — id)ig, + iXy,..ia, + iX,,%, , 110X,
0<n, <Ay, k=23,.,r, npn, yyn, =012, 00,
(2.22)
QP (Xyyeex, ) =Q, (—ids —iX] — X2, | —idya, + iXyys8, + IX,,X, | 1 e0iX,)),
QP (X1yeex, ) =0, ( —ids —iX| = XP | — id,iy + Xy, + X,,X, 4 1500, ),
o<n, <A, k=23,.,r, O0KN<A,,
withc+d= — A,anda; + b, = — A, k=2,3,...,r. As an independent verification of the norm of the weight function one

uses (2.4) and induction to evaluate the x, , , »-»X, integrations, the following summation theorem® to perform the x,,...,x,
sums,

Fm;...;l (a:B“’;...;B(‘”; L1 1) _ F(;’)F(V— a -—,3“) e _B(p))
1:0;...;0 7:—;"-;—; [t A F('}/—a)r(y‘-ﬁ(”_”'_ﬂ(‘,)) ’

(2.23)

and then theorem (2.15) to evaluate the remaining x, sum, resulting in (2.21) with ¥ = 0. The biorthogonality relations
(2.19) can then be independently verified in the manner described for the purely continuous family.* Also, the restriction
Re(a,,...,a,) #0, — 1, — 2,..., is removable from (2.19)-(2.22).

Returning to the purely continuous family (1.22)-(1.24) we consider another mixed type generalization arising from the
following parameter domain:

Re(a,a,,..,a,) <0, Re(a,, ,.a,. 2,...,ap,b,,bz,...,b‘,,c,a') >0,
Re(4] +A4), Re(A]+¢), Re(4] +d)>0, r=12,..p—1, {(2.24)
Re(a,,a,,...4,), a;+ bya, + by, +b,5#0, — 1, —2,..,

for which the first #contours C,,C,,...,C, are deformed below the real axes to pass underneath the increasing sequences of poles
X, =ia, + ij,, k= 1,2,...,r,j, =0,1,2,..., while still passing above the decreasing sequences. If these are chosen sufficiently
close to (and under) ia,, k = 1,2,...,7 then the remaining contours C, , ,,...,C, can be chosen to lie on the real axes.

To show that these contours give (1.23) with N = 0 for the norm of the weight function we begin with a change of
variables from x,,x,,...,X, t0 X1,Xp,....%,s X% 1,X, ; 5,...,X, yielding

f dxl..'f der‘ dxr+]...J dxp w(x,,...,xp)
Cl Cr — — w0

= dxl-'-f dx,[ ﬁ T'(a, +ix )T (b, —ixk)]

k=1

C, C,
Xr axe.  DA—XTB+iX)T(c+ X (c—iX)T(d+iX)T(d - iX)
. o T2iX)T( — 2iX)

Xf dx’“...f dx, T(a,,, +iX?,, —iX2, OT(b,,, —iX?,, +iX2, ;)

x[ f[ I'(ak+ixk)1"(bk—ixk)], (2.25)
k

=r42

and then the x, , ,,...,x, integrations are performed by using (2.4) and induction leading to

dx]”.J‘ dxr J dxr+1 f dxp w(xl"""xp)
C, C, — o - >

=(27r)”—'_1[ 1 F(ak+bk)][F(A’,’+, +Bf+,)]—'f dx,---J dx, [1‘[ I'(a, + ix, )T(b, —ixk)]
c, c,

k=r41 k=1

xf dX?, , T(A%,, +iX?, T(B?,, —iX?, IT(A—iX)T'(B + iX)

% Cc+iX)T(c —iX)I'(d+ iX)T'(d — iX)
T (2iX)T( — 2iX) '
Another change of variables from x,,...,x,, X2 | to X,x,,...,x, then transforms this into

(2.26)
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dxl'“f dx’f dx, f dx, w(xy,...,X,)
C C, - -

2myr— ! )] f Xm"(A —iX)I'(B+iX)I'(c+iX)T'(c—iX)T'(d + iX)I'(d — iX)
c

P
= I'(a, + b
T(4%,, +B%,,) kzI,IH kK T (2iX)T( — 2iX)

X dx,'--J. dx, T(42,, +iX—-iX])['(B?, | —iX+iXT]) II I'(a, +ix, )T (b, ——ixk)] , (2.27)
c, c,

k=1

where C passes underneath i4 {. The contours C,,...,C,, which recall pass underneath the increasing sequences x, = ia; + ij,,
k=1,.2,.,rj, =0,1,2,.., are assumed to pass sufficiently close to (and under) ia,, k = 1,2,...,r so that Re(4?, |, —iX})
> 0, which is possible on account of Re(A4 | + 4) >0. AlsoRe(B?, |, +iX]) >0sinceRe(b,,...,b,) >0and X | has negative
or zero imaginary part. In this case the sequences of poles in the variable X' do not cross the real axis and so C can be deformed
to this axis. With X real the x,,...,x, integrations can then be performed by (2.4) and induction giving

dxn"‘f dx’f dx, , | f dx, w(xy,...,x,)
[of c, - =

=(21r)”"[f1 T(a, +bk)][I"(A+B)]"Jw dXT(4 + iX)T'(4 — iX)['(B + iX)T'(B — iX)

k=1
% T(c+iX)T'(c—iX)I'(d+iX)I'(d - iX)
rix)r(-—2x)

o

, (2.28)

which is simply proportional to the single variable integral given by (1.2)-(1.4) with n = m = 0. Using this result in (2.28)
then yields the multivariable norm (1.23) with N = 0. Having verified the norm the biorthogonality relations (1.22) then
follow by the same proof as for the purely continuous family,* but with the more general inner product defined above or as re-
expressed in (2.30).

As before the contour integrals in the left of (2.28) can be expressed as multiple finite sums and real integrations by
deforming C,,C,,...,C, to the real axes plus closed loops about a finite number of poles and then evaluating the latter by the
method of residues. The norm can then be schematically written as

dx, f dx, f dx,+ E J‘ dx,, w(x,,...,x,,)
C, C, - ® - ®

Re(ay) + jx <0

= ( 1:[ [Jw dx, + (2mi) Z res(x, = ia; + ijk)]) Jm dx, Jw dx, w(x,,...x,), (2.29)
k=1 - — o0 —_

Jx=0

representing a multitude of mixed type terms involving real integrations and finite discrete sums. Accordingly the inner
product of the polynomials becomes

Re(ay) +ji, <0

P,,'Q,,,E( ﬁ [J“” dx, + (2mi) Z res(x, =ia;, + ﬁk)])
k=1 — @

Jxk=0
XJ. dx, f dx, WX, Xy ) Py (X15000%, ) O (X 5000X ), (2.30)
and similarly for P,-Q,,, P,*P,,,and 0, 0,,.
Formula (2.30) also yields a much simpler mixed type inner product. Seta, + b, = — A, + €, k= 1,2,...,r, where A,

are non-negative integers, divide the biorthogonality relations (1.22) by II; _ , T'(a, + b,) =1I;,_ ,'( — A, + €), and then
take the limit €~ 0. The only term in (2.30) that survives is the one with r discrete sums leaving (writing x,,...,x, in place of
JisesJr)

A, A, A,
Pf,”'Q,‘,?’E z Z Z

xX=0x,=0 x, =0 —

0

dx,, f dx, W3(xy,.c X, )P P (X1,000%, ) Q P (Xyy000X, ),
(2.31)
P(3).Q(3) ='1‘>(3).a(3) =AW f[ S PP - Q(”'Q(” =0, if N#M,
n m n m n ngm; n m n m ’ 3
. k=1
where the mixed weight function and normalization constant are given by (AT=2;_,4A;)

1566 J. Math. Phys., Vol. 31, No. 7, July 1890 M. V. Tratnik 1566



w?(x,,.. ,x,,

(x )H H r(ak+t'xk)r(bk_ixk)]l‘(A+Ai+X§—iX’r‘H)F(B+B§+A;—X:+;‘X¢+,)
k—l k

k=r+1
XT(c+B] +A] — X +iX2, IT(c+A] +X{ —iX?, )
D(d+Bf +A] —X] +iX?, )T (d+A] +X] —iX],,)

) (2.32)
[(2B7 +2A7 —2X7 +2iX7, | )T(247 +2X| —2iX7, )
r Al n P
,15,3>=2(2qr)!’—'[ [[ ———nm!(=D" [ I[[ T +a +bk)nk!]
k=1 (A —n)! k=r+1
x TN+ A+ )T (N+A+d)T(N+B+ ) T(N+B+d)I'(N+c+d) (2.33)
(N+A+B+c+d—1DI(N+A4+B+c+d—1) ’
and the polynomials are defined as
P (Xy,00%, ) =P, (la; + iXyyeesi@, + 0X,,X, 4 1 yerXp ),
PO (Xyyx, ) =P, (1a) + iXpyesi@, + iX,,%, 4 1100X,), 0K <A, k=12,.,r,
(2.34)

Q (XX, ) =0, (10 + X1y i8, + 0X,,X, | 1 yeesXy)y My gty = 0,12, 00,
QD (x4y000%,) =0, ({0 + iXyyeeni@, + 0X,,%, 130X,
where the indicated range of the indices applies to all four families.
These results can also be verified independently of the limit. To calculate the norm of the weight function begin with a

change of variables from x,  ,....x, to X2 | x, , 5,...,x, and use (2.4) and induction to evaluate the x, _ ,,...,x,, integrations.
This gives

J dx, " J dx, w(x,,...x,)
x—O

e [H ra +b0] 33 H( )]
F(A‘:+1+Br+1) k=r4+1 x=0 - x,=0Lk=1

xj dxX?,, T(42,, +iX2, OT(B,, —iX?, )

XT(A+ A, + X, —iX?, )T(B+B; + A — X +iX?, )T(c+ B} +A] — X +iX2, )
T(d+B, +A, — X} +iX?, ) T(d+4} +X| —iX?, )

A,

X|—_—

XT(c+A7+X7]—iX2_ ) , (2.35)
P U T(2B +2A7 —2X7 +2iX2, ) T(24; +2X; —2iX?, )
which byafurther change of variable from X2, to Z=X? |, +i(4] 4+ X7) becomes
z' 2 dx,+,'--J- dx, w?(x,,....x,)
x,=0 x,=0J — 0
)
= I'(a; + b,)
F(A‘r)+l+B‘r’+1) k—l—rI+I * * x.z—-:o xz kl;[l X
xf dZT(A + X +iZ)T(B+ A} — X —iZ)
(XD
x T(4—iZ)T(B+iZ)T(c+iZ)T(c—iZ)T(d +iZ)T'(d — iZ) ’ (2.36)

I'(2iZ)T'(—2iZ)
where the contours C(X7), X| =0,1,2,...,A] run parallel to the real axis with imaginary part i(4 ] + X }). Taking into
account (2.24) one finds that no poles of the integrand lie in the region beunded by and including C(X | ) and the real axis. In
this case each of the contours C(X | ) can be deformed to the real axis and the integral can be brought outside of the multiple
sums. The latter are then evaluated by theorem (2.23) resulting in

A,

S J. dx,, j dx, w?(x,,....x,)

x, =0 x—O

(2mp=r-! ]
= r b
T(4+1B) k=H+, (@ + 5
XJ-‘” dz T(A+iZ)T(A—-iZ)T(B+iZ)T(B—iZ)T(c+iZ)T (¢ —iZ)T(d+iZ)T(d - iZ)

LQ2iZ)r( —2iZ)

(2.37)

1567 J. Math. Phys., Vol. 31, No. 7, July 1990 M. V. Tratnik 1567



which is proportional to the single variable integral given by (1.2)—(1.4) with n = m = 0. Using this result in (2.37) then
confirms the norm as given by (2.33) with N = 0. The biorthogonality relations (2.31) are then verified in the same manner as
for the purely continuous family.* Also, the restriction Re(a,,a,,...,a,) #0, — 1, — 2,... is removable from (2.31)-(2.34).

{Il. MULTIVARIABLE BIORTHOGONAL RACAH POLYNOMIALS

The mixed type family (2.31), which is a limit case of (2.30), requires that at least one of the a parameters have a positive
real part. We consider a further generalization where all of the a parameters have negative real parts. Choosing » =p — 1 in
(2.31) we then define the parameter domain as

Re(a,ay..,a,) <0, Re(by,by...b,,c,d), Re(4{~"+¢), Re(4d{~'+d)>0,

24, A+B, A+c, A+d, Re(d+A4%""), Re(a,), a,+b,#0,—1,-2,., 3.1

a, -+ bk = — Ak’ k= 1,2,...,p - l,
for which the x, contour C,, which in (2.31) was on the real axis, is here deformed to pass underneath the increasing sequence
x, =ia, + ij,,j, = 0,1,2,... and above the decreasing sequence x, = — id —id 4~ ' — ij,j = 0,1,2,... whilestill passing above
and below the remaining decreasing and increasing sequences, respectively.

To evaluate the norm of the weight function one begins with a change of variable from x, to Z=x, + i(45~ '+ X4~ ")
giving

A, Ap~1

A, 8,y -1 /A
=3 3 [”H ( *)” dZT(A+ X5 ' +iZ)T(B+ A~ ' - X{~ ' —iZ)
= cxg—h

0 x,=o0le=1 \ X

% ' (A4—iZ)F(B+iZ)T(c+ i) (c—iZ)T'(d +iZ)T'(d — iZ)

(3.2)

C2iZ)T( —2iZ)
and then the contours C(X2~ '), X#~' =0,1,2,...,A? ~ ! are deformed back to the real axes but with indentations to pass
underneath the increasing sequence Z = i4 + §j, j = 0,1,2,... and above the decreasing sequence Z = — id — ij, j =0,1,2,...

while still passing above and below the remaining decreasing and increasing sequences, respectively. The multiple sums can
then be brought inside the integral and evaluated by theorem (2.23) resulting in

A, Ap—-l
> 3 fdxp w®(xy,....%,)
x, =0 x,_1=0JC,
F(a,,+b,,)J' . .
=—2 L 1 dZT(A+iZ)T(4—iZ
I'(4+ B) Jc ( T )

v '(B+iZ)T(B—iZ)T (¢ + i) (¢ — iZ)T(d +iZ)T'(d — iZ)
T'(2iZ)T( — 2iZ) ’
which is proportional to the single variable integral given by (1.2)-(1.4) with n = m = 0. Substituting this result into (3.3)
then yields the norm defined by (2.33) with » = p — 1 and N = 0. The biorthogonality relations (2.31) then once again follow
in the same manner as was proved for the purely continuous family* but with the inner product defined above or as expressed
in (3.5).
Deforming C,, to the real axis plus closed loops about a finite number of poles and then evaluating the latter by the method
of residues allows us to write schematically

(3.3)

Re(a,) +j,<0 Re(A+ A5~ " +j<0

J‘ dx, =J dx, + (2mi) D res(x, = ia, + ij,) — (2mi) > res(x, = —id —id% ™' — i),
< — =0 j=o
P 3.4)
and then the inner product of the polynomials can be expressed as
A, A, ) Re(a,) + j,<0
P®.Q0®= 3 e Z O{f dx, + (2mi) zo res(x, = ia, + ij,)
x, =0 Xp_ 1= — o Jp=
Re(d+ A2~ 1) 4+ j<0
— (2m) D res(x, = —id —id}~ "' — ij)}w‘”(x,,...,xp)Pf,3)(xl,...,xp)Qf,f’(xl,...,xp),
j=0
j (3.5)

and similarly for P?-P, QP02 and P Q.

Formula (3.5) has a limit to a purely discrete inner product. Take a, + b, = — A, + €, where A, is a non-negative
integer, divide by I'(a, + b,) = I'( — A, + €) and then take the limit € 0. The two purely discrete terms survive giving
(writing x,, in place of j,)
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3.0
lim P.”Qn

—o'(—A, +¢)

= (2m) 2 xz_o[k_l( )]

F(c+A+X)T(c—A-X)Td+A+X)T(d—-4—-X)
24 +2x)r(—24 —2x)
XP (XX, _ 1o, + iX,)Q 3 (XyyeeX, _ i, + iX,)
A, By A+XETU[p 1 fA Al
+@m Y 3 [1‘[( ")] (-1t
=0 x50 =0 L=t \X/V(A+X{T —-PIj—-X5)
XTQ2A+)T(B—A+ A" =T (c+A—XE '+ )T (c—A+X2""'—j)
T(d+A4—X;" ' +j)Td—Ad+ X~ =)
M4 —2X2" "4+ 25)T( —24+2X5" "' 2j)

NP XXy s — A — IAE " — YQ D XX,y — id — iAZ " — if), (3.6)
and in turn one can show that these two terms are equal. To demonstrate this make a change of summation index in the second
term, j—j + X2~ !, substitute representations (1.15) and (1.17) for P,(x) and Q,,(x), and then use theorem (2.23) to
evaluate the x,,x,,...,x, _; sums. This leaves only the jsum but if (2.23) is used again with a different choice of parameters this

can be re-expressed as a multiple sum that is equal to the first term in (3.6). The inner product can then be taken as twice the
first term

P(3).Q(3)
lim —% ==
e~oI'( — A +€)

= (4m) 2 2 [H (A )]I‘(ZA+X)1"(B 4—-X)

x, =0 x, =0 Lk=1
><F(c+A + XTI (c—A4-—X)TAd+A+X)T(d—A4-X)
I'24 +2X)IT'( —24 - 2X)
XP DXy, _yol, +ix,)Q 0 (%)X, _ S0, +iX,), 3.7

and similarly for P?-Q», P-P, and Q (-0 . The biorthogonality relations (2.31) then yield in this limit, with a
change in notation,

XT24+X)I'(B—4—-X)

Rn-Wms;}p(xl,...,xp IR, (X10esX, YW, (X 15eeX, )
(3.8)
- — p —_ —
Rn'szRn.sz;Ln H 6nkmk9 Rn.Rm=Wn.Wm=0’ lfN?éM’
k=1

where R, (x), R, (x), W,(x), and W, (x) are the multivariable biorthogonal Racah polynomials and {x, } denotes the p
discrete variables X 15X 50005% . After a customary redefinition of the parameters to a,a,,....a,, B, 8, ¥y (a=2%_,a,) this
family is given by

(ppe,) = HF(xk+ak+l)] (r+6+ Dx(y/246/2+3/2)4 ((B+6+1)X(r+l)x) (3.9)
PR k=1 Tlae+ Dx! | (7/2+48/241/2)5(y+8—a—p+2)x \ (¥ =B+ Dx(6+ 1)y '
P
A= 1 e+ 10, | B+ DaGr+ Data=84p)y(@+B—7+p)u(B+8+ Dy
k=1
(N+a+B+p)n L(y+8—a—p+29(—B—a—pT—B+ DI+ 1) (3.10)
(@+B+p+ 1w T +86+2DT(-BT(y—B—a—p+DL(E—a—p+1)’
P
R, (xp,0x,) = | ] (ak+1),,k] (B+6+ Dyly+ Dy
k=1
5 N+a+ﬂ+p,X+y+5+1:—nl,—x,;...;—-np,—xp)
F2%-s , 3.1
x ( B+68+Ly+ L, + L.5a, +1 G1D

_— P
R, (X, = [ fl @+ 0| @+8-r+mra—s+p,

k=1
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oo (Nta+B+p—X+a—y—6+p—li—nx +a,+L.5—n,x, +a,+1
XF35H . (3.12)
a+B—-y+pa—-6+pa+ 1.0, +1
2
WoGieiy) = | 1T @+ D | 4848+ DuX 741,
k=1
—N-B,~-X+a—y—6+p—1:—n,—x;.;~—n,, —x
XF3i3 ( ! ? L ! p)’ (3.13)
o —N—-X—-B—-6—-N-X—ya +l..a,+1
— P
Wn(xp---,xp) = H (a, + 1)”k] (—X+8- PIn( —X—S)N
k=1
22 2 —N-BX+y+é+L—nx+a+L.;—n,x,+a,+1
XF33 s (3.14)
s —N+X+y—B+1,—-N+X+6+ L, + .50, +1
which according to the present derivation satisfy relations (3.8) whene, + 1= — A,,k = 1,2,...,p, and the {x, } sumis over

the region 0<x, <A,, k = 1,2,...,p. As an independent evaluation of the norm of the weight function one uses theorem (2.23)
to perform the x,,...,x, _, summations at constant X and then (2.15) to evaluate the X sum resulting in (3.10) with N =0.
The biorthogonality relations (3.8) can then be independently verified in the same manner as for the purely continuous
family* apart from a redefinition of the parameters. In this way one finds that (3.8) are also valid for 8 + 6+ 1 or

y+1= —A,,,,where A, , isanother non-negative integer, and in this case the {x, } sum is over the region 0<X<A, . ;.
Another possibility is to have acombinationof § + § + lory + 1 = — A, | and only asubset of the a parameters satisfying
a, + 1 = — A,. These different possibilities and the corresponding regions of the {x, } sums are summarized below:

a. +1=—4A,, k=12,.p 0<x.<A,,
B+6+1lory+1=—A4A,,,, 0<X<4,, .,
B+é+lory+1= -4, (3.15)

and
a,+1=—A4A,, keSC(1,2,....p), (0<x, <A )N(OKX<A, ).

In the special case of a single variable all four families of polynomials (3.11)—-(3.14) reduce, through a transformation
formula satisfied by the ,F,(1) hypergeometric function, to (1.9) and the biorthogonality relations (3.8) reduce to the single
orthogonality relation (1.10).

Alternatively one could have chosen the inner product to be twice the second term in (3.6), which leads to a different but
within a change of variables equivalent family.

Another inequivalent multivariable generalizaiton of the Racah polynomials has been studied by Gustafson.” These are
closely related to the so-called U(n) multivariable hypergeometric series introduced by Holman et al.® and Holman,’ and
which have been g extended by Milne.'%'® Gustafson’s polynomials are associated with a different weight function than (3.9)
and are orthogonal as opposed to biorthogonal. The difference in these two families is a reflection of the distinct hypergeome-
tric series to which they are related, the Kampé de Fériet series (1.19) in the present case and the U(n) series in Gustafson’s
case.

IV. MULTIVARIABLE BIORTHOGONAL HAHN AND DUAL HAHN POLYNOMIALS

In analogy with the single variable case there is an interesting limit to a family of multivariable Hahn polynomials. These
are obtained upon dividing the Racah polynomials by 5~ and takmg the limit § — . The first two families R, (x) and R (x)
limit to the same Hahn polynomials H, (x) while W, (x) and W, (x) limit to the same biorthogonal counterparts H, (x),

lim § "R, (x) = 11m 8-"R,(x) = [ ﬁ (e, + l)‘,,&] (y+ DpH, (x),

S~ k=1

gim YW, (x) = lim 5~ "W, (x) = [ f[ (a, + l)nk] (v + D)yH, (x), (4.1)
g k=1

. T (x, +ak+1)] (r+ Dy

lim p(x) = s

5-°°°p Hl r_(ak+1)xk' (y—B+ 1y

where H, (x) and H, (x) are given by
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1:2;..52 N+ a +B+p: - nl’ - xl;"'; - np, - xp
H,(x)=F i}
Y+ La, + 1.0, + 1

_(_I)N(a+ﬁ Y+PIN an (N+a+ﬁ+p:—n,,x1+a,+1;...;—np,x,,+a,,+l)

:15..51

(y+ 1y a+B—yv+pa + 1.0, +1
(4.2)
T (x) = X+7+ 1Dy Fizea (—N—ﬁ: — My — Xi5e; — N, —x,,)
(r+ 1)y —N—-X—7ra,+ 1.0, +1
=(=1N ( _X+B—7’)N FH (_N_B: —npx, ta + l;"';_np)xp +a, + 1)
(v+ Dy . —N+X+y—B+La+ 1., +1 '
"These satisfy the biorthogonality relations
r 1 1 —
H H _{Z)l: P (xk “+a; + )] (7’+ )x H,,(x)Hm(x),
= k——l Fla + Dx! ] (v =B+ 1)y
H,-H,=21, H 8um> H,"H,=H,H,=0, if N#M, (4.3)
k=1

4 =(—1)”[ ] —""'—] (@a+B— r+p)~w+1)~ (N+a+B+p)y T(—B—a—p)L(y—B+1)

k=1 (@ + 1), (y+ Dy (@+B+p+ 1)y T(—BT(y—B—a—p+1)’

where the {x, } sum is over one of the regions
a,+1= —A,, k=12,.p 0<x.<4A,,
Y+1= —Ap+l’ 0<X<Ap+l’ (4.4)
y+1= -4, and g, + 1= —4,, keSC(1,2,...,p), (0<x, <A, )N(0KX<LA, ).

These polynomials have already been discussed in detail'® for the specificcasey + 1 = — A »+ 1 and the equivalence of each
pair of representations in (4.2) has been demonstrated. Among other interesting properties these polynomials possess discrete
Rodrigues formulas.

Another important limit not yet studied are the multivariable biorthogonal dual Hahn polynomials. These result upon
dividing the Racah polynomials by 8 ¥ and taking the limit S oo. In this case R, (x)and W, (x)limit to the same dual Hahn
family D, (x) while R, (x) and W, (x) limit to the same biorthogonal counterparts D, (x),

gim B ~"R,(x) =;£m B~ W, (x)= [ ﬁ (ay + l),.k] (v + DD, (x),

k=1

4 -
;im B~"R,(x)= Jim B~ W, (x) = [ I (e + l)nk] (y+ DyD,(x), (4.5)
— oo k=1
fim p(x) = H l"(xk +a; + 1)] (P+8+ D (/24 6/243/2)(y+ 1y (— DY,
B-o k=1 Tlay +Dx ! ] (57248724 1/2)x(y+6—a—p+2)x(6+ 1),

where D, (x) and l_),, (x) are given by

D,,(X) F}% .....

(X+ Y+o+Li—n,— x5 —n, —xp)
Y+ La, + 15..5a, + 1
(—X—5)~F1=z;..., (X+7+6+1 —nypx +a, + L. n,,x,,+a,,+1)
il —N+X+6+1Lla,+ e, +1 ’
(4.6)

Ll

(@—8+p)n 122 —X+a—7—8+p—1:—n,,x,+a,+1;...;——np,xp+ap+1
(X)) = —""‘——Fx-r.'"fl

(y+ Dy a—o6+pa,+L.;a,+1
_ X+7v+ Dy Fie (——X+a—y—5+p— L=y, — x50 — 1, —xp)
(4 Dy e —N—X—ya,+ e, +1
The four biorthogonality relations satisfied by the Racah polynomials, in this limit, imply the single relation
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P T(x+a,+D] (r+8+ 1), (#/24+6/24+3/2)x(y+ 1) (= 1)¥ =
PRI D,(x)D,, (x)
Sle=t Tlae + Dx! | (07246872 +1/2)x(y+6—a—p+2)x(6+ 1)y
2 n! (@=8+pPINT(y+8—a—p+2)I(S+1) A
= 8 » 4.7
LHI (ak+1)nk] G+ Dy T 4610TG—a—pr 1) A, 2nm @D

where the {x, } sum is again over one of the regions given in (4.4).
To demonstrate the equivalence of the two representations of D, (x) we first use (2.23) to deduce the identity

LX+6+1) [ r ("k —fk)]l“(N——L+X+6+1/+ ) IIL—N—1y)

NX+6+1—-N+J) (Z)k~1 7 FrJ+X+6+y+1) N(—N-7)
where j, denotes the summation indices in the Kampé de Fériet hypergeometric series (1.19). This is substituted into the
second expression for D, (x), the {j.} and {4} sums are interchanged, and (2.23) is used again to evaluate the fclrmer.
Reversing the remaining {¢, } sums by transforming &, —n, — ¢ then yields the first expression for D, (x). For the D, (x)
representations one begins instead with the following identity also deduced from (2.23),

(N+a—8+p) [ ( )]r(zv Lta+p—X—58—y—1) (F(L+X+r+1))
rJ+a—-6+p) ;‘Sk_l rJ+ae+p—X—-6—y—1) rx+y+1 /
Substituting this into the first expression for D, (x) and proceeding as before then yields the second representation.

There are also mixed type counterparts to these Hahn and dual Hahn polynomials which are obtained as limit cases of the
mixed type Wilson polynomials. In (2.19)-(2.22) put

, (4.8)

(4.9)

ak = a]'( + %iwk, bk = b;( - %iwk, k = 1,2,...,p,

X, =xp, k=12,..,n x,=x; —w,, k=r+1,.p, (4.10)
P
c=c + LW, d=d' —LiW, WEZ W,
k=1

divide the polynomials by (/)" and then take the limit W— oo (and drop the primes). The mixed Wilson families P [» (x)
and P ‘®(x) both limit to the same mixed Hahn polynomials while Q {* (x) and Q {* (x) limit to the same biorthogonal
counterparts

lim (W)~ PP (x) = lim (iW) "PP(x) =HP(x),

W o W—

lim (iW) VP (x) = hm (iW) =N O (x) =H®(x), (4.11)
W— o

lim w?(x) = 1’[( )“ ﬁ I'(a, + ix, )T (b, ——ixk)]

W— oo k=1 k=741

XT(A47 +d+ X7 —iX?, OT(B] +c+ Al — X +iX2 ),
where H ¥ (x) and H (’(x) are given by
(N+A +B+c+d—1:—n, A +d

P
HE,Z)(X) — [ H (ak +bk)n,\:|(A +d)NF:%€ A +dla| +bl;

k=1
+X; _iX£+1; =Ny — Xy — Ry — Xy — Ny 158, 4 +ix,+,;...; —n,a, +ixp)
—Ay.s—Asa,, +b,, 550, + b,

p N+A+B+c+d—1:—n, B +c+ A}
=(-D¥ H(ak+bk)nk](8+c)NF1. ..... ( v '

Bt B+ ca,+ by
_Xr+er+1:“‘n2’_A2+xz; s—h —A,+x,;—n,+1,b,+1 lxr+1) npybp_ixp)
b
— Ay —Ana, .+ b, 50, +bp

(4.12)
{ — N+ 1L:—n,B7 +c+ A}
Al —N—x,+ lia, + by;
—X{4+iX, —ny— A+ x5 —n,— A x5 —n,, 0,0, —ix., g5 —n,b, —ix,
— Ay —Asa,,, +b,, 550,45, )

H;Z)(x)=(_1)N|:H(ak+bk)nk]( l+x )NFIZ,...; (

k=1

A —N+1l:i—n,d] +d+X| —iX?, ;

14
(@ + b ),,]( —x) F”"if(
H " k), ML —N+x,+ laa; + by;

k=1
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— My — Xajey — Ry — X, — My o8,y A 0X, ey — Rpyly + zxp)
b
— Ay —Apa,, +b,, 550, +b,

withc+d= — A,and q;, + b, = — Ay, k =2,3,...,r. These satisfy

_ ™ ) A, A, r A p
ng)-H;ﬂEf dx,,---f dx,,, 53 H(x")“ 11 l"(ak+ixk)l"(bk—ixk)]
— — o k k=r+1

x, =0 x,=0Lk=1

XTI} +d+ X5 —iX2, YT(B} +c+A] — X} +iX2, DHP()H P (x),
HOFD =10 (] by HOHO=H®-HD =0, if NAM, (4.13)
k=1

r P
AP = Q@mP="T(n, +a, +b)n,! H(—Ak)nknk!][ 11 F‘”k“k“’k’”k’]
k=2

k=r+1
Al T(N+A+d)T(N+B+c)
(A,—N! CN+A4+B+c+d—1)I(N+A+B+c+d—1)"

and the equivalence of each pair of representations in (4.12) follows from (4.2) upon a redefinition of the parameters and a

change of variables. ‘
Another mixed type Hahn family is obtained from (2.31)-(2.34) using the same limiting procedure. That is, transform
the parameters and variables as in (4.10) and then take the limit W— o . This yields,

im (iW) - "PP(x) = lim (W) "PP(x) = HP(x),

W— W o
lim (iW)~"QP(x) = 11m (iW) YO (x) =H(x),
W—
(4.14)
et (AL, e o)
lim I'(a ix, )T'(b, —ix
W-u=T(4"+ ¢ +iWT(B' +d' — kI_I. x L L Tt 5T =0
XT(A]+d+X] —iX2, )T(B]+c+A] — X[ +iX2, ),
where the polynomials are given by
2 N+A+B+c+d—1 —n,—Xx;
H(3) — ( I 1>
— Mgy — Xajeiy — My — X3 — My y 148,y +EXpy 500 — Np0a, + ix‘,)
— Ay —Aua,, +b,, 4550, +0b,
L N+A+4+B+c+d—1li—n,— A +x
=(-D¥N b B F'2 ( 1 b
( ) kl;ll(ak+ k)"k]( +NF i B4c—Ag
— Ny — AZ + X355 — 1, — Ar + X, — n,+|,b,+1 - ix,+,;...; - np,bp - ixp
, (4.15)
— Ay —Asa, +b, 550, +b,

—N—c—d+ 1:

- P

k=1

=Ry = Xy =y — X = Ry @y X e — 1,8, + ix,,)

+iX?, , +1:—Aps—Ausa, 4+ b, 5.0, + b,
I . . ~N—c—d+1:
=(=D"| ] (@ +bk)nk](c—A. — X +zX',’+.)NF:;%;:::;%(_N_HA; X
—np—A x5y —n,— A +x5—n, 0,0, —ix, 55— 0,0, — ixp)
— X0+ L—As—Aa,, + b, 5, + b, ’
witha, + b, = — A, k= 1,2,...,r, and these satisfy

H;,n-fnysj dxp---J dx. S [ ()][ r(ak+ixk)r<bk—ixk)]
— - xi=0 x,=0 k—l Xk

XT(A} +d+X; —iX?, I)T(B} +c+A] — X{+iX‘,’+l)Hf,3’(x)I_1§,f"(x),

1573 J. Math. Phys., Vol. 31, No. 7, July 1990 M. V. Tratnik 1573



HPHP =1 Ham HPHP=HPHY =0, if N+M, (4.16)

VAN 7 o Linkt H (= A, ! ][ H I'(n, +a, + bk)nk!]( — 1Y
=1 =r41
F(N+A4+d)T(N+B4+c)[(N+c+4d)
(N+A+B+c+d—DI(N+A+B+c+d—1)

Notice that the weight function in (4.16) is equivalent to that of the first mixed type Hahn family (4.13); the two families of
polynomials are however distinct. The equivalence of each pair of representations in (4.15) again follows from (4.2) upon a
redefinition of the parameters and a change of variables.

The analogous mixed type dual Hahn family is obtained from (2.31)-(2.34) in the limit d - oo. In this case P {*’(x) and
0 (x) limit to the same dual Hahn polynomials while P ¢’ (x) and Q £ (x) limit to the same biorthogonal counterparts

limd ~"PP(x)=1lmd Y0P (x) =D (x),

d- o d—
lim d - ”P‘”(x)—hmd“”Q‘”(x) D ¥ (x), (4.17)
d— o
. (3)(x)
1 — 3 ,
Fapde Tl
where

r A '
PPx) = H(x")“ ﬁ I‘(ak+ixk)F(bk—zxk)]I‘(A+A{+X§—iX’,’+,)
k =r+1

k=1
F(c+B] +AT + X[ +iX0, )T (c+A4] —X] —iX7, )
T(2B} +2A; — 22X +2iX?, 124 +2X| —2iX?, )’

r p A+A7 +X7 —iX?
DP¥(x) = H(—Ak),,k” II (a +bk),,k](A+c)NF}f (
k=1 PRy A+c

XT(B+ B +A] —X{ +iX?2, )

r+ 1+

— Ry = Xy — By — X3 — By 158, 4 + 1x,+,;...; - np’ap + ixp)
—Aj.s—Asa, 1 +b, 558, +b,
A+ A7 +X]

14
=[H(_AUMH 1 wk+mnjw—A:—X:+Mﬁ4uF&ﬁ(_N_c+A;

k=r+1

—iXE i—n,— A+ X3 ,—n,,—A,+x,;—n,+,,b,+,—ix,+,;...;—np,bp-ixp) (4.18)
+X;—in+l+1:_Al;"';_Ar;ar+l+br+1; ;a +b ’ )
- r p by fB—A7 —X7+iX2
DPx)y=|T] ( ~Ak)nk][ II (a +bk),,k](B+c')~F};?;:::; ( e
K=1 k=r+1 B+c:
—n, = A+ X —n,— A X =0, b, — X,y e — b, — ixp)
— Ay —Asa,  + b, 550, + b,
. A ’ r_ 12 B—A1— X1
=TI ¢ —Ak)nk][ II (a +bk)"k](c+A1 + X1 — X7, ONF i ,
K= k=r+1 —N—c—4]
+iXE = ny =X — R — X — My 08 g X 5 — N0, + ixp)
—XT+iX,,  +L—As—Asa,  + b, 5508, + b, ’
witha, + b, = — A,, k= 1,2,...,r. These satisfy the biorthogonality relation
® © A, A, —
[Cax[" @ 3 3 P@PP@DR®
- — o x, =0 x, =0
=22m) " ] (= Ak),,knk!][ H I'(n, +a, + b)n,! ]F(N+A +a)T(N+B+c¢) H Sy (4.19)
k=1 k=r+1

and the equivalence of each pair of representations in (4.18) follows from (4.6) upon a redefinition of the parameters and a
change of variables.
The purely continuous multivariable biorthogonal Hahn'? and dual Hahn* polynomials are also known.
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The unitary irreducible representations of SU(2,1)
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This paper analyzes the irreducible unitary representations of SU(2,1) in a basis labeled as

|p, g; jmy), where p,q correspond to quantum numbers associated with the quadratic and cubic
Casimir operators, j,m label states of the SU(2) subgroup, and y labels the quantum number
with respect to the U(1) subgroup. All the irreducible representations are found and the
allowed range of these quantum numbers for each representation are given. The results are
expressed in the form of diagrams that show the allowed values in a (j,p) plot for fixed values
of p,g. A (p,q) plot is also provided that indicates the allowed values of these quantum

numbers.

I. INTRODUCTION

Recently it has been shown that noncompact affine cur-
rent algebras can be used as building blocks in the construc-
tion of unitary conformal field theories that describe vacuum
configurations of string theory."? In this construction it is
necessary to use unitary representations of noncompact
groups in which the states are labeled by the eigenvalues of
the Casimir operators and by the quantum numbers of the
maximal compact subgroup. Thus, for SU(1,1), the labeling
is |jm), where j labels the Casimir and m labels the U(1)
subgroup. For SU(2,1) the labeling must be done as indicat-
ed in the abstract. In Ref. 2 a construction using harmonic
oscillators was used in order to analyze some discrete repre-
sentations of SU(N,M), including SU(2,1) and applying
them in conformal field theory. However, one needs to know
all theirreducible representations with the complete allowed
range of the quantum numbers in order to carry out the full
analysis of the conformal field theory. The most important
noncompact groups in this application are SU(1,1) and
SU(2,1).2 The SU(1,1) case is fully understood? while for
SU(2,1) we have results only for certain discrete representa-
tions.?

The mathematical literature® on noncompact groups is
mainly developed in the Iwasawa decomposition (that uses
triangular subgroups) while some mathematical physics li-
terature®® uses still a different basis than the one useful in
our application. Furthermore, most of the available discus-
sion is limited to the discrete series representations that can
be much more easily handled in terms of oscillators as in
Refs. 2 and 6.

For our application we have thus found it necessary to
develop the full set of representations in the SU(2) XU(1)
basis, labeled with the quantum numbers |p,g; jmy). This is
the same basis used for SU(3) in particle physics applica-
tions, and was developed fully by Biedenharn and other au-
thors’ in the case of SU(3). Actually, SU(2,1) was studied
in the basis of interest to us sometime ago by Biedenharn,®
but this work seems to have been forgotten and we became
‘aware of it when it was pointed out to us by the editor after
submitting our paper to the journal. Our method is similar to
Refs. 7 and 8, which amounts to methods of quantum me-
chanics applied to the analysis of a system of operators that
form a Lie algebra. This aproach yields all the unitary repre-
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sentations and the allowed range of all quantum numbers as
demonstrated in this paper. The set of representations that
we found are considerably larger than those of Ref. 8 due to
the fact that the authors put a giobal restriction that we do
not impose. In our application in conformal field theory
based on SU(2,1) we need to discuss the covering group and
hence the global condition of Ref. 8 should not a priori be
imposed. Hence we discover a much larger set of representa-
tions that were not previously discussed in our basis even for
ordinary SU(2,1).

Itis useful to point out that, as is well known, all unitary
representations of SU(3) are finite dimensional and can be
obtained by taking direct products of the fundamental 3 and
3 representations. The most convenient form corresponds to
traceless tensors T" f,’,’: with completely symmetrized p
lower indices and g upper indices. A single lower index
i = 1,2,3 correponds to three-dimensional fundamental rep-
resentation while a single upper index j = 1,2,3 is the three-
dimensional complex conjugate representation. The qua-
dratic and cubic Casimir operators have eigenvalues on this
tensor, and they can be shown to be given in terms of the
nonnegative integers (p,q). The (p,q) labels that we use for
SU(2,1) in |p, g; jmy) correspond to the same ones as the
SU(3), except that, as we shall see they take on not only
integer values, but also other values on the real line as well as
in the complex plane. When (p,q) are integers, the remain-
ing quantum numbers (j, m, y) take values in different re-
gions for SU(3) or SU(2,1) cases, as seen in the plots that we
obtain. It is instructive to keep in mind the SU(3) case as we
develop SU(2,1) representations and note the differences, as
we shall do below.

il. GENERATORS AND COMMUTATION RULES

We prefer the matrix form of SU(2,1) generators, de-
composed according to the maximal compact
SU(2) X U(1) subgroup

« (Js+Y/2 ke A1)
R’ ¢ -y N
where the hypercharge operator Y is the generator of the
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U(1) subgroup and the matrix form of the subgroup SU(2)

18
J J
g=(l° _+). (2.2)
Furthermore,
K= K”z) (2.3)

—1/2

form a doublet j = 1/2 operator under the SU(2) subgroup
and carries U(1) charge + 1. Thus, the low case letters a,b
take the values + 4. The Hermitian conjugate of K * is de-
notedas K} = (K" ,,,K1},,) and it forms a row matrix
that transforms as a doublet under SU(2) from the right and
has hypercharge — 1. Thus, when an upper index a has the
value + 1 the corresponding lower index has the value — 1,
etc. Note the factor of i that appears in the definition of K, K
in (2.1). This factor of i would be missing if we were consid-
ering SU(3) instead of SU(2,1).

The commutation rules for both SU(2,1) and SU(3)
may be given in the form

[25.05] =850 — 6505, (2.4)
from which we may extract
[JO’J;t ] = 'l_-J:t ’ [J+)J—]=2‘]0, [KJZ] =01

[JO’Kil/Z] = i%Kil/z ’ [KK;};I/Z] =K;tl/2’

ViK_ 121 =Ky U Kipl=K_y)p,

[Kil/z,KT:Fl/z] = ¢Jo"‘%Y’

[Kil/Z’KTj:I/Z] = "‘Ji ’
[J+,K1/2] = [J—’K—1/2] =0,

(2.5)

[K1/2’K—1/2] = [KT— 1/2:K}L/2] =0,

and the commutation rules among K Z with J +, J,, Y are
obtained by taking Hermitian conjugates of those involving
K °. The commutation rules for SU(3) differ from the above
only by having the opposite signs on the right-hand side of
the commutators [K %K} ]. The origin of this difference is
the analytic continuation provided by the insertion of the
factors of /in (2.1).

A harmonic oscillator representation may be given for
these generators.” To do so we introduce annihilation oper-
ators 4, (p) and B(p) and creation operators 4 %, B', with
their lower and upper indices in one-to-one correspondence
with the indices above. The label p = 1,2,...,Pis an additional
index corresponding to P copies of these oscillators, where P
is an arbitrary positive integer. By taking many copies of
oscillators we are able to construct more general representa-
tions. For SU(3) all representations may be constructed
with this method, but for SU(2,1) only certain discrete in-
teger representations can be described with harmonic oscil-
lators, as we shall see below. Thus we can now write for
SU(2,1)
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5 =2 A"(p)4,(p) — 854 ™(P)A. (p)),
I4

Y=4(4"4+2B'B+2P),

K= ;‘, A"(p)B(p), K!= ; A, (p)B(p) .
(2.6)

It can be checked that these correctly satisfy the SU(2,1)
algebra. For SU(3), B and B' are exchanged in the con-
struction of K, K T and the factor involving 2P is omitted in
Y. In this paper we will first develop the representations
generally without using harmonic oscillators. We will then
compare the more limited harmonic oscillator results to the
general situation.

According to quantum mechanics, given an algebra of
operators as above, we need to choose a maximal number of
commuting operators that can simultaneously be diagonal-
ized, and then use their eigenvalues in order to provide a
complete set of labels in the Hilbert space. The obvious can-
didates include Y, J,,, which form the Cartan subalgebra, the
quadratic Casimir operator for SU(2) given by
J-J =} Tr(J)?, and the quadratic and cubic Casimir opera-
tors of SU(2,1) given by

C,=1TrQ?=1Tr Q"
=JJ+3¥(Y—2)— KK}
=JJ+3¥(Y+2)-KIK®, (2.7)

C, = (1/Tr{Q*+ 07}
=JJ(Y+1) =¥ (¥ + 1) (¥ +2)

—Ki(J; —8)K +iK[YK®
=JJ(Y—1)—IY(Y—1)(Y—2)

—(J5—8)K°K] +4YKK], (2.8)

where Q' is the transpose of the matrix Q. In the two forms
of the Casimir operators we have used the commutation
rules in order to move either K or K ' to the right. For SU(3),
the Casimir operators differ from the above because they
have minus signs in front of all the terms involving K,K *.

The eigenvalue of the SU(2) Casimir operator will be
parametrized as usual by J-J =j(j + 1), while the eigenval-
ues of the SU(2,1) Casimir operators will be parametrized
by

C=p+q+i@*+pa+¢"
= — 1= (%% + X3 + X3%,) , (2.9)
C=h(Pp—)(P+29+3)(g+20+3) =xxx5,
where
x,=—(p+2+43)/3
x, =(qg—p)/3,
x3=2p+q+3)/3.

(2.10)

Note that x, + x, + x; = 0, which reduces the independent
parameters to two among the (x,,x,,x;). As we shall see, the
X,X,,X; parametrization will be handy in our analysis al-

|. Bars and 2. Teng 1577



though this parametrization is equivalent to that of (p,q). As
already mentioned earlier, for SU(3) the integers (p,q) are
related to the rank of the tensor, but for SU(2,1) their values
will differ significantly from SU(3) and they have no tensor
interpretation.

lIl. UNITARITY CONDITIONS

The five mutually commuting operators (C;, Cy; J+J,
Jy, Y) are simultaneouly diagonal on the states labeled by |p,
g;jmy), where (m,p) are the eigenvalues of (J,,Y) that form
the Cartan subalgebra, while the eigenvalues of the Casimirs
have been parametrized above. Our task is to determine the
action of the remaining generators on these states and obtain
the allowed values of (p, ¢, j, m, y) so that this basis provides
aunitary representation of SU(2,1). Unitarity demands that
the generators (or their matrix representations in this basis)
are Hermitian and that the norms of all states are positive.
From the Hermiticity of the SU(2) XU(1) generators we
already know that the eigenvalues (j, m, y) must be real. As
we shall see later the half-integer values of j and the values of
» will be required to be within certain ranges depending on
the values of (p, ¢).

Hermiticity of the Casimir operators C,, C; also re-
quires that their eigenvalues be real, that is,
XX + XpX3 + X3x;, = XTx¥F + x¥x¥ +x¥x¥t  and  1xox;

= x¥x¥x¥. In general this is satisfied if either all (x,, x,, x;)
are real or if one of them is real and the other two are com-
plex conjugates of each other. Thus, (p,q) will generally be
allowed to be complex.

There are three possibilities if (p,q) are complex, de-
pending on which x; is real

g= —1+r+is
g= —1—i2s (x;=real),

p=—1—r+is, (x, =real),
p=—14r—is

p= —1+41i2s,

3.1)

g= —1—r—is (x,=real),

where n =0,1,2,3,... and as in (4.3), the points y = y, at

j =Jo + n/2 are included only if # is an even integer.
C2=r2/3—s2—— 1,

C,= Q2r/2T) (P +95) . (3.2)

When (p,q) are real we can divide the real (p,q) plane into
six regions that correspond to six possible ways of ordering
(x,, X5, X,) on the real line. It is evident from (2.9) that any
one of these regions will produce the same real eigenvalues
for (C,, C;). It is therefore sufficient to take them in the
region (p> — 1, g» — 1), which corresponds to the order
X, <X,<x5. The mapping (p,g)—(C,, C;) is evidently
six to one  with the equivalent  points
(A, ~A_~Ay,~A_,~A;~A_; as shown in Fig. 1) given
by

Pg)~(—gq—2,—p—2),
~(—=p—=2,p+q+1)~(— @+ q+3)p)
~P+g+1,—qg—2)~(g,— (p+q+3)),

(3.3)

with the first factor 4, = (p,q) taken in the region (p>1,
g>—1.
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FIG. 1. The six equivalent points in p-¢ diagram. The following six points
are equivalent: A~A_ | ~Ay~A_,~A;~A_,, A4, = (pq),
A1 =(—q—2 —p=-2); A,=(—-p—2,p+4q+1),

A4 ,=(—(p+g+3)p) A=(p+q9+1,-q-2),

A_;=1{g, — (p + ¢+ 3)), *graphic parameters 4, = (p,g) = (1.5, 2.5).
In this diagram, one can reach 4, and 4, from A4, following the dotted lines
shown. Finally, the other points 4_ |, 4_,, A_, are obtained by a reflection
from the solid line that makes a 37/4 angle with the p axis and passes the
point (p,g) =(—1, —1).

Although the Lie algebra is represented equally in any
of these regions of the complex or real (p,q) plane, the global
properties of the SU(2,1) group representations may very
well be different in each of these regions. [ For an example of
such global properties consider the case of the supplemen-
tary series for SU(1,1) whose Casimir eigenvalue depends
only on the absolute value of a parameter o which lies in the
range — 1<o<]1, but which has global representations that
differ depending on the sign of ¢.°] In this paper we will
concentrate only on the representations of the Lie algebra
and will not discuss global properties of the group represen-
tations. Therefore, our discussion will concentrate on the
region (p> — 1,g> — 1) when (p,q) arereal, and the case of
x, = real when (p,q) are complex. We find that we do not
miss any representations by concentrating in this region pro-
vided we include in our list of representations the complex
conjugate representations of those discussed below, if they
are not already included automatically.

When the unitarity requirements are applied to the
SU(2) subgroup they yield the familiar results, namely

= —j, —j+ L.,j—1,jandj=0,41,3,2,... . Further-
more, the action of J_ on the states is

J . |pgimy) =G+ 1) — m(m £ 1) |pgii(m £+ )y).
(3.4)

There remains to figure out the action of K “and X'} on

the states. Since K%, K carry “hypercharge” y=1, — 1,
respectively, their action on states shifts the eigenvalue y by
the corresponding amount ( 4 1). Furthermore since, from
the point of view of SU(2), these are tensor operators with
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“spin” j = §, we can use the Wigner—Eckhart theorem' to
write their action on the states up to “reduced” matrix ele-
ments in the form,

K., \p.gjmy)

—c+(ly)‘/ T p,q,1+2 m:tz +1D
. j¢m‘ .(._-1_-)( -l—) 1 >,
:tc_(l.v)‘/ 2 Pba\J 5 m:i:2 +1)

(3.5)
K ti 172 IP’qumy)
] 1

— Td Gy [IEmE
Fd. Gy ———2j+ 1

lpa(i+5) (m+3)o-D)
+d_(y) | /J:FTJ”' ‘p,q;(j— %)(m i%)(y— 1)> :

The reduced matrix elements (¢ , ,d , ) can depend only on
the quantum numbers (p,q,/,p) since all the m dependence is
already displayed in the SU(2) Clebsch-Gordan coeffi-
cients (the square roots) dictated by the Wigner-Eckhart
theorem. In order to obtain these four coefficients we apply
the [K,K T ] commutators on the states, use the above formu-
las for acting on an arbitrary state, and further demand that
the quadratic and cubic Casimir operators be diagonal with
the eigenvalue parametrized as in Eqs. (2.9) and (2.10).
These conditions completely fix (¢, ,d, ). We then find
that we can parametrize these coefficients in terms of the
cubic function

G(x) = (x — %) (x — %) (x — X3)
=x3—(C2+l)x—'C3, (3.6)

where (x,, x,, x;) are given in terms of (p,q) as in (2.10),
and x is expressed in terms of (j,y) depending on the coeffi-
cient as follows:

) GG+y2+1
c () = —%t—)—,
c_(iy)=\FG(2;_{Ty/2) , (3.7)
. —G(—j+y/2—1
o= [=HSHAD,
L | GU+y/2)
d-) = Z+1

It can be verified that this form provides the general repre-
sentation of the SU(2,1) commutation rules on the states.
Given the reality conditions on (j, m, y) (or x) and the
reality (or complex) conditions placed on (x,, x,, x;) (or
C,, C,) arrived at in the first paragraph of this section, we see
that in a unitary representation G(x) is real. For unitarity
we should have positive norms and Hermiticity of matrix
representations for all generators. Requiring a positive norm
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(D.gijmy|p' g’y m'y') =8,,8,,6;8,,8,, , (3.8)

and demanding that the matrix elements of X “ be the Hermi-
tian conjugates of those of K I, that is,

(0:gjmy|K T:;: 12 |Pgimy’)

= ({p.gmy|K ; . |P.giimy)), (3.9)

corresponds to insuring that (¢, ,d , ) be real. This is possi-
ble provided the arguments of each of the four square roots,
in (3.7) are positive:

GGi+ly+1)30, —G(—j+)>0,

—-G(—j+y—-1>0,
G( + i) >0. (3.10)

This restricts severely the allowed ranges of (p, g, , y). [For
SU(3) we need to require the opposite sign for each G(x)
since we need to multiply it by an extra minus sign. This
corresponds to multiplying (¢, ,d, ) by a factor of —i
that is equivalent to removing the factor of i in (2.1).]

IV. THE SERIES OF IRREDUCIBLE UNITARY
REPRESENTATIONS

It is easy to check from (3.5) that each time K,k are
applied on the states the variable x appearing in ¢, is in-
creased by 1 or 0, while the argument x appearingind , is
decreased by 1 or 0. This implies thatin a (j,p) plot the action
of K,K't can be seen to correspond to stepping motions along
straight lines on which the states are designated as discrete
points, as seen in the plots that we present below. Taking this
stepping behavior of x into account we examine the inequal-
ities (3.10). It is evident that in order to avoid getting out of
the allowed region by the aplication of power of K or K' we
must require that the stepping operation terminates by satis-
fying

(x—x)(x—x3)(x—x3) =0. 4.1)

Applying this condition with the four types of arguments
x=(G+y/2+ 1) or (—j+y/2)or (—j+y/2—1)or
(j + y/2) maps out the boundaries of the allowed regions. In
all the (j,y) plots below (Fig. 2 and Figs. 3—-11) these boun-
daries are indicated as dotted lines. Then, taking into ac-
count the inequalities, we can easily identify graphically the
regions allowed by the unitarity conditions (3.10). In gen-
eral there will be several disconnected regions allowed by the
inequalities. However, this is not all. For any given region to
be unitary, we must also insure that the spin eigenvalues j
included in that region are half-integer. In all our plots the
lowest spin state of an allowed region is indicated with a
heavy dot. [ As we shall note later, the irreducible represen-
tations of SU(3) as well as SU(2,1) can be both allowed in
some integer series plots, e.g. in Fig. 3, in which case we label
the lowest spin state of SU(3) by a circle instead of a heavy
dot.] In some of the figures there are regions that are ex-
cluded when the spin condition is not satisifed while the
same figure contains regions that do satisfy the spin condi-
tion. The half-integer spin condition may put restrictions on
the values of (p,g) beyond those imposed by Hermiticity
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FIG. 2. Principal series. p+ 1= —r+si, g+ 1=r+si, x,= —r/
3 —si, x, = 2r/3 =real, X, = — r/3 + si, where r,s = any real number,
C, + 1 = (P —5)/3, C; = 2r(*/9 + 5°)/3, *Graphic parameter 7 = 4.8.

which was discussed in the beginning of Sec. III. These will
become evident as we discuss the various possible values of
(p,q) case by case below.

A. Principal series, Fig. 2

When (p,q) are complex as in Eq. (3.1), as already ex-
plained, we will consider only the parametrization of which
X, is real since all other cases are equivalent at the algebra
level. We will refer to this case as the principal series. Since
x; +x, +x3=0wecanwritex; = ( — X, + ip)/2 = X5, 50
that G(x) = [(x + x,/2)* + p*/4] (x — x,) showing that
the boundaries for G(x) = 0 arise only from x = x,. [As we
shall note later, the irreducible representations of SU(3) as
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FIG. 3. Integer series. p+ 1 =int, g+ 1=int, *graphic parameters

p=4, q=3.
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well as SU(2,1) can be both allowed in some integer series
plots, e.g. in Fig. 3, in which case we label the lowest spin
state of SU(3) by a circle instead of a heavy dot.] For the
four cases of x indicated in (3.10) we draw the four dotted
lines in Fig. 2. The region allowed by the inequalities (3.10)
is shaded by lines that correspond to steps taken by x when
K,K are applied. Recall that X increases the eigenvalue y
while Kt decreases it. The states are the points where these
lines cross. The state of lowest spin is unique. In this case it
has the spin-hypercharge (j,, ¥,) quantum numbers

Jo=0, yo=2x,=4r/3, (4.2)

and is indicated by a heavy dot. The hypercharge y, is not a
priori quantized without imposing additional global con-
straints that may be required in physical applications. Note
that this is not the lowest (or highest state) in the traditional
sense of weights that are given as the eigenvalues of the Car-
tan generators (m,y). However, this state plays a similar role
in that all states are obtained from this one by applying K,K '
repeatedly. We will call this state the generating state to dis-
tinguish it from the lowest or highest weight states that will
appear in some of the plots below. For the principal series the
generating state does not put new conditions on (p,q) be-
yond those already indicated in (3.1). The rest of the al-
lowed states have quantum numbers (j,p)

Jj=n/2, y=yo—ny,—n+ 2.5 — 2,[yolyo + 2,

wYo+ 1 — 2y, + n, (4.3)

for every non-negative integer n = 0,1,2,3,... . Note that the
point with y = y, is included among the j = n/2 states only if
n is even.

B. Discrete series of p,q,(p +- q) types, Figs. 8, 9(a), 9(b)

When (p,q) are real asin (3.3), then they are allowed to
be only as indicated in Fig. 12. Namely, they can take values
on any vertical line for which p = integer or any horizontal
line for which g = integer or any slanted line on which
P + g = integer or they can take values in the shaded re-
gions. It will become apparent how these restrictions arise as
we discuss each case separately. As already indicated, we
will restrict our analysis to the quadrant defined by
(p> — 1,9g> — 1). When pisinteger and ¢ is not we call the
representation the p-discrete series. Similarly if g is integer
and p is not we call it the g-discrete series. Finally, if neither p
nor g are integers but p + ¢ is an integer, we call it the
(p + q)-discrete series. These lie in Fig. 12 on any vertical,
horizontal, slanted line, respectively, but not on any inter-
section of these lines. In addition we need to consider the
points of intersection and the shaded regions of Fig. 12
which we will discuss separately.

First consider the p-discrete series, asin Fig. 9(a). Here,
G(x) can vanish when x equals any real x;. Taking into
account the four possible expressions of x as in (3.10), we
draw the 12 dotted lines (six slanted forward and six slanted
backward) that provide the boundaries. Then we look for
the regions that satisfy the inequalities (3.10). There are
three such regions but only in one of them the spin j takes
non-negative half-integer values thanks to the fact that p is
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(a)

(b)

FIG. 4. Integer series. (a) p + 1 =int,
etersp=3, ¢g=0.

an-integer (in considering the 12 boundary lines the half-
integer requirement for the spin was ignored at first). Had p
not been an integer we would have to discard that region as
well. This is why (p,q) needs to be on one of the vertical lines
in Fig. 12 (similarly for the horizontal lines by exchanging
the roles of p and ¢). The allowed shaded region is indicated
in Fig. 9(a) by lines that correspond to stepping via the gen-
erators K,K1. Note that in this figure p = 3 corresponds to
the maximum 3 steps that can be taken by applying purely
powers of KT on any state. This is one way of secing that p
needs to be an integer. The state with the lowest spin, the
generating state, is indicated by a heavy dot and has

Jo=0, yo=2x3=3(2p+q+3). (4.4a)

=3 -

-4

3 H

FIG. 5. Integer series. p + 1 =int,
p=0, ¢=0

g+ 1 =int, *graphic parameters
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¢ -+ 1 = int, *graphic parameters p =0, ¢ =4. (b). Integer series. p + 1 = int,

g+ 1 = int, *graphic param-

There is a state with lowest hypercharge at the bottom of the
shaded region. This is a spin multiplet that contains the low-
est weight state in the traditional sense. Its coordinates are

Jo=p/2, Jo=1—X,=2+(p+29)/3.  (44b)
The lowest state has m = —j= — p/2. All states may be
generated from this one (or from the generating state) by

applying powers of K,X . Thus we can characterize all states
in the p-discrete series by

Vo—”/2|<i<io+”/2, y=j’0+n’ (4.5)
where n =0,1,2,3,... . The expression for the limits on j is
consistent with the figure, but they also can be regarded to
arise through addition of angular momentum.

The g-discrete series in Fig. 9(b) is derived with very
similar arguments. In this case the generating state is identi-
fied as

j0=0’ y0=2x1= ——%(p+2q+3). (4-63)
The highest state has j, = 1 + x,, j, = ¢/2, m = ¢/2. All

the states may be generated either from the generating state
or from the highest state and they be characterized by

o — n/2|<j<fo + 0/2, y=3,—n, (4.6b)
Note that in Fig. 9(b), g = 4 corresponds to the maximum
four steps that are possible by applying powers of only
K. :

The (p + g)-discrete series of Fig. 8 is derived through
similar procedures as the above two cases but now the al-
lowed region is quite different. The generating state has an
allowed half-integer spin thanks to the fact that (p + ¢) is an
integer. The other regions are excluded because p,q are not
individually integers. This explains the allowed slanted lines
in Fig. 12. The generating state is identified as

Jo=1(x3—x)/2=14+4p+q), yo= —x2=4(p+4q),
(4.7)

while the set of allowed states is given by
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J=Jo+n/2, y=yo—ny—n+2,..5— 21l
Yo+ 2pyo+n—2y,+n, (48)

where (7,5) = real. All three parametrizations produce the
same eigenvalues for (C,, C;),

C. Integer series

When both p and ¢ are integers then all three regions
corresponding to the p-discrete, g-discrete, and (p + ¢)-dis-
crete series are allowed simultaneously as seen in Fig. 3.
Thus, in this case the eigenvalues of the Casimir operators do
not uniquely label the irreducible representations. One must
in addition supply the region (that is not overlapping with

-1

-2 4

-3

-3
FIG. 7. Integer series. p+ 1 =int, ¢+ 1 =int, *graphic parameters
g= —1.

= -1
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(b)

¢ + 1 = int, *graphic parametersp =3, g = — 1. (b) Integer series.p + 1 = int,

g + 1 = int, *graphic param-

any of the others). The generating states and the highest or
lowest states as well as the sets of all states have formally the
same expressions as (4.4)—(4.8) except for the fact that both
p and g are integers. This makes the values of y one-third
integer in general.

The center of Fig. 3 contains a finite-dimensional SU(3)
representation that corresponds to the tensor with p-lower
and g-upper indices as mentioned in the Introduction. This is
not part of the allowed region for SU(2,1) given in (3.10),
but it is the only allowed region if the orientation of the
inequalities in (3.10) is reversed, corresponding to SU(3).
Note that in Fig. 3, p = 4, ¢ = 3 corresponds to the maxi-
mum number of steps allowed by pure X motions or pure K

FIG. 8. Discrete serics [ (p + ¢)-type]. p+ ¢+ 2 =int,but p>0, ¢>0,
*graphic parameters p=1.3, ¢=2.7.
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FIG. 9. (a) Discrete series [p-type]. p + 1 =int, and ¢> 0, *graphic parameters p=3, ¢ = 1.3. (b) Discrete series [g-type]. ¢ + 1 = int, and p>0,

*graphic parametersp =2.4, g=4.

motions, respectively, for either the SU(3) representation or
the SU(2,1) p-discrete/g-discrete representations.

In Fig. 4(a) we specialize to the case of p =0 and
g = integer. The p-discrete region has shrunk to a line [so
did the SU(3) region] while the g-discrete and (p + ¢)-dis-
crete regions remain as before. However, now another repre-
sentation has made its appearance in the form of a line stuck
in between the g-discrete and (p + ¢)-discrete regions. This
line as well as the single line p-discrete region correspond to
the merging of two boundary dotted lines. Thus, for these
values of (p,q) there are four rather than three distinct
SU(2,1) representations and the region must be specified in
addition to the Casimirs in order to uniquely identify the
irreducible representation. The states for the three regions

(a)

FIG. 10. (a) Supplementary series. p>0,
g>0,

—~1<p<0and p' + § <1, *graphic parametersp= — 04, ¢=
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that we have seen before are correctly described by the pre-
vious formulas (except that we need to take the p = 0 limit).
The states of the fourth representation are generated from
the highest state and are given by

j=i@+1+n), y=—-n—-1-—¢/3.

In Fig. 4(b) we have ¢ = 0, p = integer. Therefore, this
case corresponds to interchanging the roles of p and ¢ in the
previous paragraph. The information conveyed by the figure
is self-evident. The states of the fourth representation are
given by

j=3p+1+n), y=n+1+p/3. (4.10)

In Fig. 5 we consider the case of p=¢=0, or

4.9)

(b)

0.3.

—1<g<0 and p'+ ¢ <1, *graphic parameters p=1.3, ¢g= —0.6. (b) Supplementary series.
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FIG. 11. Supplementary series. — 1 <p<0,
*graphic parametersp = — 0.7, g= —0.6.

—1<g<0and p' +§ <1,

x, =0, x; = 1= — x,. There are now five representations
for the same eigenvalues of the Casimirs. The mechanism by
which they arise are evident from the previous discussion.
Only the (p + g)-discrete region fills an area as before, while
all other four regions correspond to single lines. Even though
these are neighboring lines one cannot jump from one to the
other because they are collapsed boundary lines that satisfy
(3.10) and (4.1). The quantum numbers of the states in
these five irreducible representations are obtained from the
above formulas by specializing to p = ¢ = 0.

In Fig. 6(a) we consider ¢ = — 1, p = integer. There
are now only two representations for the same Casimirs, the
p-discrete and the (p + g)-discrete regions. The g-integer

ANAANANANAN

NN
BIASANANAN N R

-5 .
-4 -4 -2 ] 2 4 3

FIG. 12. State-labelling diagram—Allowed values of (p,q). The letters A4,
B, C, etc. correspond to the (p,q) values used in Figs. 3-11.
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region has shrunk away completely. The generating state
and the highest lowest weight states of the p-discrete region
are given by Egs. (4.4a) and (4.4b) withg = — 1, whie the
set of all states in this representation is given by (4.5). The
states of the (p + ¢)-discrete region are given by (4.7) and
(4.8).

Similarly, Fig. 6(b) corresponds to the interchange of
p,g with p= — 1, ¢ = integer. There are again two repre-
sentations for the same Casimirs: the g-discrete and the
(p + g)-discrete regions, with the p-discrete region van-
ished.

Finally, in Fig. 7 we consider the p=g¢= — 1 case.
This is the only integer point for which there is a unique
irreducible  representation for given  Casimirs
C,= — 1, C; =0(x; = x, = x5 = 0). The surviving region
is the (p + gq)-discrete case, with the other ones vanishing.
The generating state is located at (j, = 0, y, = 0) and the set
of all states is given in (4.8) as specialized to the current
generating state.

D. Supplementary series

The shaded regions in Fig. 12 (forp> — 1,g> — 1) is
characterized by either p or ¢ or both being in the region
between — 1 and 0 and by the condition p + ¢ = 1, where
(P,q) are the decimal parts of (p,q). The boundaries of the
shaded regions are excluded from the supplementary series
and they have already been discussed as part of the p-discrete
or g-discrete or (p + g)-discrete or integer representations.
Thus, we are concerned only with the inside of the shaded
regions.

Unlike the continuous (p,g) values in the white regions
of Fig. 12 for which it is impossible to satisfy the spin condi-
tion, the (p,q) values inside the shaded region can satisfy it
because the g-discrete or p-discrete regions cease to exist on
their own and combine with the previously (p + g)-discrete
region. Thus, for any (p,q) values inside a shaded region
there is an allowed area whose generating state is located at
Jj =0, and the figures are identical. Thus when g is positive
we get a generating state [ Fig. 10(a)]

Jo=0, yo=2x;=3(2p+4q+3), (4.11)
When p is positive we get a generating state [Fig. 10(b)]
Jo=0, yo=2x,= —3(p+2¢+3). (4.12)

When both p and g are between — 1 and 0, we get two gener-
ating weights for the same Casimirs (Fig. 11) whose expres-
sions are the same as (4.11) and (4.12). In order to clearly
distinguish the states generated by each one of these generat-
ing states, they are indicated by crosses of solid and contin-
uous lines in Fig. 11, respectively. The full set of states are
given by (4.8) as applied to the current generating states.

V. HARMONIC OSCILLATOR REPRESENTATIONS

We consider the commutation rules and construction of
generators from harmonic oscillators as in Eqs. (2.2)-(2.6).
We will work in the Fock space based on the usual vacuum
annihilated by all annihilation operators 4 *(p),B(p). The
harmonic oscillator representation is obviously unitary in
Fock space and it allows the construction of a highest weight
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representation as follows. We choose states [{)) that are an-
nihilated by K = 4, - B. In addition, we demand that |Q2)
form a collection of states that transform irreducibly under
SU(2) X U(1). This is the multiplet that contains the lowest
weight. Applying on these states all possible powers of
K?=AY-B" generates all the states in the SU(2,1) repre-
sentation. All of these states can be written in terms of irre-
ducible representations with respect to the subgroup
SU(2) X U(1) by working out the Clebsch-Gordan series in
the direct products of |Q1) and the symmetrized powers of
K®s. This is a straightforward exercise for the
SU(2) XU(1) group. Thus, if the lowest weight is identified
to have spin and hypercharge (;'0, ¥o) then the rest of the
states in the irreducible representation have spin and hyper-
charge given by Eq. (4.5). We wish to find the values of
(Go» 7o) that may be constructed with the harmonic oscillator
representation and identify the (p,¢) quantum numbers for
these representations.
The possible candidates for |2} can be listed;

|0), 4%(p)|0), B0},
A™(p)4(p,)[0), B'(p,)B'(p,)|0),
A"(p)B(p,)(0), p1#Pp2,

A (p)A " (p) B (p3)|0), pupa#Ps

(5.1)

and so on, with any number of 4 s or B s, provided the p
indices on the A4 ’s are different than those on the B’s. This
structure insures that any of these states is a candidate for the
highest state. However, before identifying a specific |2) we
must first symmetrize—antisymmetrize the indices of the 4 ’s
among themselves according to the rules of SU(2) Young
tableaux to make an irreducible SU(2) representations.
Note that if P =1, then the only possibility is completely
symmetric tensors of SU(2) corresponding to single row
Young tableaux with a boxes, giving j = a/2. P #1 allows
Young tableaux up to P rows but for SU(2) we can only go
up to two rows. For a two-row Young tableau with a,,a,
boxes, the spinisj = (a@; — a,). The U(1) quantum number
is calculated by adding the U (1) charges of the vacuum and
of the 4 and B oscillators applied on the vacuum. The vacu-
um has hypercharge y,,. = 2P /3, the A4 1 has hypercharge |
and the B ' oscillator has hypercharge  all of which is seen
from the hypercharge operatorin (2.6). Using these rules we
can identify the SU(2) X U(1) content of each of the~above
candidates for the highest weight in the form |Q) ~ (j,, §5)-
Thus, we give a few examples:

0}~ (0,2P/3), A™(p)|0) ~(},(2P+ 1)/3),
B*(p)|0) ~(0,2(P+ 1)/3),
A™(P)B()[0)~ [(1,(3 +2P)/3)],

AT (p)AY (p,)|0) ~ [(1,2(P + 1)/3)],
AM(p,)4 1) (p,)[0) ~ [(0,2(1 + P)/3)],

(5.2)

where the latin indices are symmetrized in line 2 and anti-
symmetrized in line 3. In this way, it is clear that all values of
Jo = half-integer will be possible through the 4 oscillators,
while the U(1) charge takes the form
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Jo=(a+2(b+ P))/3, (5.3)

where (a,b) are, respectively, the number of 4 and B oscilla-
tors applied on the vacuum to construct the lowest state |(2).
Note that P appears only in the combination b + P = b.
Thus y is quantized and positive since a,b are integers.

We see then that the harmonic oscillator representation
reproduces the p-discrete branch of the integer series of Fig. 3
and Eq. (4.5), with j,=a/2 =p/2 and §,= (a +2b)/
3 =2+ (p+ 24q)/3. This allows us to identify

a=p, b=gq+3. (5.4)

It is possible to also reproduce the g-discrete branch of
the integer series in Fig. 3 with harmonic oscillators by tak-
ing all the above oscillators to have negative norm. Equiv-
alently, we may keep the definition of the generators as be-
fore but change the definition of the vacuum so that it is
annihilated by A |, B . The effect of this is to reverse the sign
of the hypercharge of the states that we have constructed
above, thus corresponding to the g-discrete branch.

Note that when P = 1 the only representations that are
possible with harmonic oscillators are the single line p-dis-
crete branch of Figs. 4(a) and 5 or the single line g-discrete
branch of Figs. 4(b) and 5. The extra single line branches of
Figs. 4(a) and (b), and 5 cannot be reproduced with har-
monic oscillators alone. The integer series (p + g)-discrete
branches of Figs. 3, 4(a), 4(b), 5, 6(a), 6(b), 7, or the other
nonfully integer representations cannot be reproduced with
the harmonic oscillator construction of (2.6).

VI. CONCLUSION

The above analysis exhausts all irreducible representa-
tions since it covers all possible allowed eigenvalues in the
complete labeling |p,q;jmy). As emphasized in Sec. III and
Eqg. (3.3), when (p,q) are real it is sufficient to discuss the
region (p> — 1, ¢> — 1) for representing the algebra, but
global properties of the group may require more discussion
in the entire (p,q) plane. A similar comment applies to the
three possible parametrizations when (p,q) are complex, as
in Eq. (3.1).

The main motivation for the present paper was to pre-
pare the group theory background for applying SU(2,1) af-
fine current algebras to the construction of conformal and
superconformal field theories in 1 4+ 1 dimensions. This will
be presented in a separate publication.'! We hope that in this
process we have produced a clear and complete description
of all unitary irreducible representations of SU(2,1).
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Symplectic orbits in quantum state space

Dariusz Chruscifski

Institute of Physics, Nicholas Copernicus University, Toruh, Poland

(Received 6 September 1989; accepted for publication 24 January 1990)

All symplectic orbits of the action of an arbitrary compact connected Lie group on the space of
density operators are found. It is shown that there is only one orbit that is Kédhler (orbit of

coherent states).

I. INTRODUCTION

Let ¥ be a complex finite dimensional Hilbert space
and let G'be an arbitrary compact connected Lie group. Sup-
pose that we are given an irreducible unitary representation
of G on 7. Then there is a natural action of G on the Lie
algebra su (N) (where N is a dimension of 7#°):

®:G Xsu(N) -»su(¥),
VgeG Vaesu(N) ®(ga)=gag", ()

where we identify G with its unitary representation and g*
denotes Hermitian conjugation of g.

Let O(a) and O(a) denote orbits of the adjoint repre-
sentation of SU (V) and of the action (1), respectively, pass-
ing through aesu(¥). It is a well-known fact that O(a) isa
symplectic manifold with canonical Kirillov form'™ [Kiril-
lov form is a canonical form on orbits of the coadjoint repre-
sentation but, for su(V), we have a natural isomorphism
between adjoint and coadjoint orbits via Killing form®].

Leti,:0(a) — O(a) beaninclusion. There is a question:
Which aesu(N) gives rise to a symplectic manifold
(O(a), i*w,)? This problem was solved by Kostant and
Sternberg® only for acP(5#°) (corresponding projective
space). In this paper, we give a general solution.

Why is this important for physics? There are at least two
reasons. First motivation is connected with a generalization
of Hartree—Fock theory’~® (HF theory is generalized so as to
apply to nondeterminantal densities) and other approxima-
tions'® and the second comes from control theory (a control
theoretic aspects of this problem will be published else-
where). In control theory, 5 is a Hilbert space of N-level
quantum system S and the Lie algebra g of G is generated by
a time-dependent Hamiltonian of S. In both cases a state of a
physical system is represented by a density operator [ Hermi-
tian, semidefinite operator on #° with unit trace (in HF
theory trace may differ from unity but it is important that
trace is fixed) ]. Let & denote the state space.. We have the
unique decomposition

p=/MI+p, (2)

where pe? and p lives in su(N). Let Z = {pesu(N)
peg’} Elements of & will also be called states. So we are
looking for states in & that lie on symplectic orbits of G.

Il. SYMPLECTIC ORBITS

Let us remind the reader of the definition of the Kirillov
form w, on O(p) for pe 7 (weidentify adjoint and coadjoint
orbits by Killing form). Any tangent vector 4,€7,0(p) is
of the form 4, = [4,p], where 4esu(X) and
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w,(4,,B,) = (p,[4,B]), 3

where ( , ) denotes a Killing form on su(N).
But (A4,B) = Tr(A4AB),"! thus

®,(4,,B,) = Tr(p[A,B]) =2Re Tr(Bod) .  (4)

If peP(5#°) (orbit of pure states) then p =
ve? and

o, (4, B =2 Im(Av|Bv) =i<v|[4,B]v> ,(5)

where (|) denotes scalar product in 5%,

Proposition 1: ®:G X O(p) - O(p) defined by (1) is a
Hamiltonian action.

Proof: (1) ® is symplectic:

(PFw), (4,,B,) = 0pgp) (Pye Ay, e By)
= (gpg* g[4.B1g™)
= Tr(gpg*gl4,B1g™)
=Tr(p[4,B]) =w,(4,,B,)

(2) @ is Hamiltonian since G is semisimple and coho-
mology groups H'(g) = H*(g) =0

Let J,0(p) —g* denote the moment map for this action
defined by

Vp'eO(p) VAeg J,(p")(4) = (p'4). (6)
We identify g* with g so J, (p') lives in g.

Theorem 1: Let G X P— P be a Hamiltonian action of a
semisimple Lie group G on a symplectic manifold P. Then
the G orbit passing through peP is symplectic if and only if
the stabilizer group of p is equal to the stabilizer group of
J(p) (J:P—g* is a moment map for this action).

For the proof see Ref. 4.

The stabilizer group of J, (p’) contains some maximal
torus T'and hence J, (p') belongs to the Cartan subalgebra ¢
of g (¢is a Lie algebra of T"). Let A, denote the Cartan subal-
gebra o£ su(V) such that tCA. From Theorem 1, it follows
that if O(p') is symplectic then p'eh, N 7. We must now
determine which states p'eh, N & give rise to symplectic or-
bits of G. Let g° denote the complexification of g. We have a
decomposition

g¢=t‘+ @oCE,, N

where E, denotes a root vector corresponding to the root a
and a ranges over all the roots. Similarly, we have decompo-
sition of the real form of ¢°

g=t+ oR(E,—E__,)+ ®oRI(E,+E_,), (8)

where a ranges over all positive roots. Subspaces %,
spannedby [E, — E_,,p’ | andi[E, + E _ ,,p'] are mutu-

{v){v|, where
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ally orthogonal with respect to w, for different positive
roots. So to check that /% w,, is a symplectic form we need to
know that if @, vanishes on %, then tangent vectors are
zero. From (4) it follows that if (p',[ E,, E_,]) =0 then
Ep =pE, =0 (since Ef=E_,). But
[EosE_,] =t.€t and (p',t,) = a(p’) (roots are elements
of t*). We have thus proyen Theorem 2.

Theorem 2: An orbit O(p) is symplectic if and only if p is
an element of the Cartan subalgebra of su(N) and satisfy the
following condition: if a(p) =0 then E, p =pE, =0 for
every root a.

IIl. KAHLER MANIFOLD

Now we find which symplectic orbits 6( p) described by
Theorem 2 are Kéhler manifolds. It is well known that if G'is
a connected complex Lie group then the only Kihler homo-
geneous space for Gis of the form G /P, where Pis a parabolic
subgroup of G. Let us reiterate that a Borel subgroup of Gis a
maximal complex solvable Lie subgroup and a parabolic
subgroup is a complex Lie subgroup containing a Borel sub-
group. A Borel subalgebra of g° (standard relative to ¢) is of
the form

b=t+ o CE, . (9)

a>0
We are looking for states that are stabilized by a Borel sub-
group B=exp b. Let peg’ be such a state. Thus for every
a >0 and seR

SE, n sE_

e pe =p (10)
[ we must define this action on 2 because the action of G ¢

does not conserve [ in gl(¥,C)]. Differentiating (10) with
respect to s and putting s = 0 we obtain

Va>0 Eaﬁ+ﬁE—a“’ (11)
The Liealgebrasu(N)isof thetype 4, _; (Ref. 11) and for
any i, j = 1,2,..., N vector E; such that (E;),, =90, 6, isa
root vector for su(N)°. A root a; is positive if i <. Root
vectors for g° have the following form: E,=Z2, AE,
where 4 {*’eR. A root e is positive if in this sum all pairs (if)
have the property i <j. Let p = £} _ , A, E,, and a be a posi-
tive root of g°. From (11) we obtain

a

2 2 APA(EEy + EnEy) =0 (12)
(iH k=1

SlnceE Ekl = 5JkE11 thus
Z/'L(a)/{ (E +E)_ (13)

[
and hence A {* 4; = 0. Since representation of G is irreduci-
ble there exists a positive root & and a number i/ <j such that
A 50. Thus 4; =0 for any j>1 and because Trp =1
there must be A, =1. S0 p =E|| = |Upax ) {Umax |, Where
[Umax ) is the maximal weight vector.
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Theorem 3: There is only one orbit that is Kéhler and
that is the orbit passing through p = |V, ) (Vpax |-

The Kihler orbit has a clear physical interpretation.
This is an orbit of so-called coherent states.'?

(V. EXAMPLE

Let us consider G = SU(2), which plays a fundamental
role in control theory. For any N there exists irreducible
unitary representation of SU(2) in a Hilbert space C ¥ [so-
called spin-§(N — 1) representation ]. Let us take for simpli-
city N = 3. Since SU(2) has only one positive root a, we
have

010 0 0 O
E,=f0 0 1) ; E_,={1 0 0O} . (14)
0 0 O 0 1 0

The Cartan subalgebra ¢ is spanned by

1 O 0
[E.E_.]=t,=[0 0 o0 (15)
0O 0 -1
Letpch, sop =2} _ A E.; , where 2} _ 4, =0:
a(p) = (pt,) =Tr(pt,) =4, —4;. (16)
If a(p) =0 then
A 0 0
p=l0 —24 o0 an
0 0 A

But E p#0for A #0 and hence 6(p) is not symplectic. In
particular, for A = — 1, p = |v) (v| where (v| = (0,1,0).
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General relationships expressing U(n) and Sy coupling and transformation isoscalar factors in
terms of U(n) Racah and 94 coefficients are derived. The absolute values of U(n) Racah
coefficients involving at most k-column irreducible representations are shown to be identical
with SU (k) Racah coefficients. In particular, an explicit relationship is established between
the U(n) and SU(2) approaches to the many-electron correlation problem.

1. INTRODUCTION

The unitary group Racah-Wigner algebras!™ have
been widely exploited in many different fields ranging from
particle and nuclear physics to molecular and solid state
physics and chemistry. In quantum chemical applications,
the so-called unitary group approach (UGA)%! has been
primarily exploited in large scale electronic structure calcu-
lations based on the molecular orbital model (cf. Refs. 11-15
and references therein). This approach relies heavily on the
representation theory of unitary groups, or rather, of their
Lie algebras, since the electronic spin-independent Hamilto-
nian for an n-orbital model of atomic and molecular systems
can be expressed in terms of U(n) generators and the corre-
sponding exact wave function can be expanded in terms of
canonical basis vectors spanning the carrier spaces for U(n)
irreducible representations (irreps), (e.g., Refs. 6 and 16).
Consequently, the basic parameters arising in the represen-
tation theory, such as matrix representatives of generators,
Clebsch—Gordan (CG) coefficients, isoscalar factors, or re-
duced Wigner coefficients as well as higher-order invariants,
such as the U(#n) analogs of Racah coefficients and 9 j sym-
bols (cf, e.g., Refs. 17-19), play the central role in such
applications. Although all such invariants appear implicitly
in various exploitations of the UGA formalism, they have
not always been recognized as such, particularly when var-
ious ad hoc procedures were developed for specific algor-
ithms used in atomic and molecular electronic structure
computations.

At this point, we must recall that there exists a very close
relationship between the representation theory of the uni-
tary and symmetric groups. In applications to many-elec-
tron systems, where at most two-column irreps are involved,
there is an additional intimate relationship of both the orbi-
tal group U(#n) and the particle symmetry group Sy irreps
with those of the angular momentum or spin group SU(2).
Indeed, these interrelationships enabled a useful cross fertili-
zation in the development of various aspects of UGA formal-
ism and stem from a radically different yet closely related
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men, Fujian, People’s Republic of China.

® Also at: Department of Chemistry and Guelph-Waterloo Center for
Graduate Work in Chemistry, Waterloo Campus, University of Water-
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viewpoints offered by these three groups. For example, Sha-
vitt’s graphical representation of UGA bases,*!""'>!* which
naturally derives from the ABC (or Paldus) tableau formal-
ism, suggested an analogous representation in the .Sy -based
approaches.”®*! Similarly, the necessary segment values for
an efficient evaluation of matrix elements of U(#) generator
products were first derived® by exploiting SU(2) graphical
methods of spin algebras,? following an earlier exploitation
of this technique within the context of the S, -based formal-
ism.?. The approach based on Green—-Gould?* representa-
tion theory for unitary and orthogonal groups also relies
heavily on various concepts of tensor representations .and
proceeds via evaluation of reduced Wigner coefficients.?*?¢

In our recent papers,>”>® we have elaborated explicitly
the implications of the Sy—U(n) duality, and derived rank
n-independent expressions for U(#n) isoscalar factors and
Racah coefficients by exploiting the symmetric group based
formalism.?® Since the matrix elements of any tensor opera-
tor are given by a product of a reduced matrix element and a
CG coefficient, the latter being in turn expressible as a prod-
uct of isoscalar factors, the matrix element segmentation '
that is widely exploited in UGA (e.g., Refs. 8~15) repre-
sents, in fact, a particular case of Racah factorization with
relevant segment values being given by properly scaled U(r)
isoscalar factors.*® We also note in this context that Kent
and Schlesinger®' have recently exploited these ideas for
general multicolumn U(n) irreps, expressing the generator
matrix elements through higher-order Racah coefficients
and U(#n) 3n — jsymbols, although the explicit expressions
for these quantities remain to be worked out. Very recently a
new progress in the development of the U(n) Racah-
Wigner algebra® was achieved with the help of the vector

- coherent state theory,’”* which enabled to establish the

relations between certain classes of reduced Wigner coeffi-
cients (or projective operators) and 6 j and 9 j symbols.

It is thus clear that there exists a close relationship
between various approaches that are employed in the deriva-
tion of required group theoretical invariants. It is the pur-
pose of this paper to elucidate the relationship between the
isoscalar factors and higher-order U () invariants as well as
between the U(n) quantities and SU(2) Racah coefficients
in case of many-electron systems. In Sec. II, we present a
simple and unified formulation of the relationship between
the U(n) analogues of Racah and 9 j symbols and U(n) and
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S, isoscalar factors. In Sec. III, we consider many-electron .

systems, in which case a correspondence with SU(2) invar-
iants can be established. It is believed that a clarification of
these relationships will provide us with a better understand-
ing of U(n) tensor operator calculis and will enable its more
versatile exploitation in more general situations when spin-
dependent interactions are present or particle number is not
conserved. - :

Il. ISOSCALAR FACTORS AND HIGHER-ORDER U(n)
INVARIANTS ‘

A. General relationships

The irreps of U(n) can be labeled by Young diagrams
(4), or simply A, having an arbitrary (finite) number of
boxes N that we can interpret asa particle number N and that
are arranged in at most n rows, being otherwise n indepen-
dent. The same diagrams will also label the irreps of the
symmetric group Sy, in which case we designate them by
[A]inorder to distinguish them from the U(n) irreps (1 ) or
A.

Let us first recall that we can define two basic types of
isoscalar factors for U(n).?

(i) The standard isoscalar (or coupling) factors, also
referred to as reduced Wigner coefficients, that are associated
with the canonical: subgroup chain U(m)DU(m — 1),
(m<n). These factors are associated with the coupling that
leads to Gel’fand-Tsetlin states®® and we designate them as
the I, factors,”®

LG mlan)=(Gs anléon)
E(jl '5: av)’ 1)

a'v
a, a' being the multiplicity labels, if necessary.
(ii) Transformation factors, designated as I, fac-
tors,2”*® that correspond to a basis transformation from
Gel'fand-Tsetlin states to arbitrary partitioned states that

are adapted to the subgroup chain U(n, + n,)
OU(n,) e U(n,),
u|av N ) a(V))
II(A [ ’ I)E( /1 ' ’ !
av)S\P (il
E(/t -y av) | )
pla'v

A product of the I, factors yields U(n) Clebsch—Gor-
dan (CG) coefficients, while a product of the I, factors gives
subduction coeflicients for the above given chain. The inter-
relationship between the I, and 7, factors has been estab-
lished in our recent study® and is given by the formula

Hv H 172 .
1,(,1 # “") = (_____-") 1,,(1 H “V), (3)
w By, H, H, #11Bvy
where a and £ are multiplicity labels and H; designates the
product of hook lengths for the Young diagram A
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H/l ‘—"IIh,-. o ' (4)

The latter determines the dimension f; of the irrep [A] of
S Ny .

fi =N.VH,, (5)

N, being the number of boxes in the Young diagram A, so
that we can also write that

H, =N,V/f,. (5"

Analogously to the above given U(n) factors I, and I,,
we can define the isoscalar factors 7, and I, for the symmet-
ric group Sy, namely:?’-%

(iii) The outer product isoscalar factors I, which are
associated with the coupling leading from the Young-Ya-
manouchi bases for Sy, and Sy, to that for Sy, , 5 , and

(iv) the subduction isoscalar factors I, which enable a
transformation from the standard .S basis to the nonstan-
dard basis adapted to the chain Sy DSy, ® Sy, . The relation-
ship between the Z, and I, factors is similarly given by’

(e} | alv]® (u] | alv]
T =
(11 [u.]ﬂ[m) (121 [u.]ﬁ[v,])
_ Nvf;,f;; 172
—[N#fvf;t.
[A1 [u]]|alv]
XI"([,{] )

(118 [v]
(6)

where [1,] and [v,] are obtained from [u] and [v] by a
removal of a single box. In fact, the relationship given by Eq.
(6) represents a special case of Eq. (3) that relates the U(n)
isoscalar factors. The relationships between the I, and I,
factors, and between the I, and I, factors, have also been
established and can be found in Refs. 28 and 29. For the sake
of simplicity, we drop in the following symbols 1, 1,, I, and
I, since we can easily recognize these factors by their struc-
ture and the irrep symbols used (4 or (1 ) for U(#) and [4]
for Sy).

A wide variety of notations is employed in the literature
for the recoupling coefficients involving three, four, or more
irreps. In the case of the SU(2) group, the most often ex-
ploited are the 6 and 9j (or, generally, 3n — j) coefficients,
which possess a very high symmetry in their arguments.
However, for nonsimple reducible groups, as is the case of
general U(n) groups, this advantage is lost since the mixed
symmetry may result when high multiplicities are involved
as shown by Derome®” (cf. also Ref. 29). In such mixed
symmetry cases, it is impossible to define a 3/ symbol that
changes only its phase under an arbitrary permutation of its
columns. Consequently, the symmetry properties of higher-
order invariants, such as the U(#n) analogs of the 6j and 9j
symbols, may be rather involved. In view of this fact we
prefer to investigate primitive recoupling matrices of lower
symmetry, thus avoiding an unnecessarily complex nota-
tion, even though the mixed symmetry is nowadays fairly
well understood for CG coupling coefficients, and in some
cases*® even for Racah coefficients. We thus adopt the fol-
lowing notation for the U(n) Racah coeflicients and 9/ sym-
bols:
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U(ili%/l3;ﬂ'12/123)a,2az3aa’

1= (A d))apAdsad |4,,(AA;)apd el ) )]
X(A A A A4 124364 134244) a0, aaa

i = (A A)a A 1 (Asd ) asud g

al [(AiAd3)a 3,5, (Ad) @i 0’ A ). (8)

In the SU(2) case, this notation was employed by Jahn.**

It is well known that Racah coefficients can be ex-
pressed as a sum of products of four CG coefficients. Using

the orthogonality properties of the latter, we easily find that
[cf., e.g., Eq. (139) of Ref. 28; for a more general form, see

Ref. 4]
@Al A, Ay
S Vo dihies) sy | 3

(’11 A al2/1'12></112 A, a/l>
W, W, W,, Wl WZ WlZ le W3 w

X ('12 A3 azﬂzs)

W, Wi Wy l’
an expression that involves fewer terms in the summation on
the rhs than the defining relationship having all four CG
coefficients on the rhs. Expressing next each CG coefficient
as a product of an isoscalar factor for U(n) DU(n — 1) and
a CG coefficient for U(n — 1), i.e.,

9

3 XA A A s AaiD o |

z ( /ll 42
W, Wy, W\, W, W, Wy, Wl W2

WiW,

a12/112>< Ay Ay
Wo I\W;, W,

as well as a corresponding recursion formula

S X AAA G i 151208) e
= X 2

Boliatinitotiyastize BiaBarsBiabBrB
X(il A, alzﬂ-lz)(ia Aq a34/134)(j'112 Azs
1 M2l Btz 3 Hal Bagdts, 12 H34

Racah coefficients and 94 symbols possess many useful
properties just as in the SU(2) case. We note, in particular,
their orthogonality and symmetry properties as well as their
reduction to simpler quantities, when one or more of the
irreps involved is a trivial scalar irrep. Some of these proper-
ties that will be useful to us later are summarized below.

(i) Symmetry properties. Using the symmetry of CG co-
efficients relative to the interchange of coupled irreps [cf.
Eq. (136) of Ref. 28],

‘Bipys Hog

(/11 Az
W, W,

a12'112>
Wi,

=(—1* *'/12+/1"®(/11»'{2/112)az.z
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a'A| Ay A,
Waa

A3l z4
Wi,

a'Alds /124)

ol

</112 A3 |ad (u /‘12 gs Bf_‘)
W, Wl W ; 12 M3 ﬁ/‘ W12 L AN 4 ’
(10)

where A,’sand u,’s areirreps of U(n) and U(n — 1), respec-
tively, while W,’s and W,’s are relevant Weyl tableaux label-
ing the corresponding U(n) and U(n — 1) states, we obtain
the following recursion formula for the Racah coefficients
involving the U(n) DU(n — 1) isoscalar factors:

"AlA, A
Z U(ﬂ' 1'12113/1 12’123 ) a,,aaa’ @ ] ! 23)

Hifty s
= Y Y Ulppappisipintion) s, p,.ee

HBapiauitaz BiaBinB
x(j] Az alz/llz)(jlz As aﬂ)
1 M2 Bt 12 M3lBu
X(yz As azsﬂ-zs) ]
2 M3l Baias
This formula will be used to derive a simple relationship
between Racah coefficients and isoscalar factors.
The same procedure can be extended to higher-order
invariants. For 94 symbols [or X coefficients of Eq. (8)],

which can be similarly expressed in terms of six CG coeffi-
cients, we find

(11)

X(ppeotprasti1oftsastbiadtantd) ,.5,.5,.8,.88"

><112 Azs a/1></11 As alSAIB)(AQ A4 a24/124)
Wi, Wl WINW, Wil Wi [\W, W, Wy
(12)
AslapA\(A2  Ad|@redas
. (13)
31 Brattys 2 HalBasftas
i
A, lal2/ll2)
X( R (14)
w, Wi W,

with the phase factor ©@(4,,4,,4,,),,, equal to 1 in case of
unique multiplicity, we get for the X-coefficients that

X(l 1'12'{'3/{4)'l 121'34;’1131’24;'1)a,2a,4a.,a,.aa'
= ¢'®(/11/12'{12)a., '9(4314/134)% ‘O(A3had) o
'X('12/1 1'1413;/1121’34;/1241113;1)a,za_uaua”aa'
= ¢‘®('{ll3'113)a., '(')(/1244'124)0:,4 ‘O(ApA34),

X(AAA 1'{27134/112;/{13/124;1)auaua”az‘aa’ ’ (15)

where
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¢___ (— 1)/1.+Az+/l,+A.+A.2+,1,4+A.,+A,4+/1

(16)

We do not consider permutational symmetry involving the
third column in CG coefficients, Eq. (14), which can in-
volve a mixed symmetry. We stress, however, that Eq. (14)
holds even when the mixed symmetry does occur. We also
recall similar properties for the U coefficients, given by Egs.
(134-7) of Ref. 28.

(i1) Reduction of the X coefficients when one or more
irreps are trivial scalar irrep (0). We list only independent
cases, the remaining ones follow by applying the above given
symmetry rules,

X(A,04:4454 1'134;/113/14?{) — aua,—aa

= U(ﬂ’lﬂ'3ﬂ'l4;/ll3ﬁ‘34)a,,aua’a’ 17)
X (0043440435434 45434) o, - — _a,

= X(02,0454,4404245404) _ _ _ Cpattys —

=X(A, 0005 AA AgA) - _ _ 4., =1 (18)

Note that when A, = A, = (0), the X coefficient is given by
the phase factor appearing in Eq. (15). Finally, when any
three of the irreps A,, i = 1,...4 are trivial irreps (0), then
X = 1. We also note that we can use the reduction of the X
coefficients to Racah coefficients, Eq. (17), when one of the
irreps is (0}, to find corresponding symmetry and reduction
properties for the latter, by expléiting Egs. (14)-(18).

B. Relationship between S, isoscalar factors and U(n)
Racah coefficients

We shall first derive a useful relationship between Ra-
cah coefficients and symmetric group isoscalar factors. We
thus consider U (n) isoscalar factors that are associated with
the so-called special Gel'fand states,*® in which all single
particle states are singly occupied. Such isoscalar factors are
then identical with those for the symmetric group S when
using standard Young-Yamanouchi basis.

We employ Eq. (11) for the special case when
(A = (1) and (u,) = (0), so that u =pu,, and we set
A,3 = py3 = V. Relabeling other irreps to simplify the nota-
tion, we thus get

(1) v’)

O a0y

= 2

z U0 Vg V') BB —

Babisi: BB
((1) u ,u)(#,u A av)(it’ A azsv')
) wolp/\yy sl BV/ \uy 31 Bysv'
(19)

The isoscalar factors on the rhs imply that we must have
Uy = My, and thus B = B,,, sothat alsopu, = u', u; = A and
a,; = f3,; in view of the last factor in Eq. (19). We thus get

o )

(0wl Al
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U((l)#’vi;W)_B,,_(v

Vl

(20)

since the Racah coefficient and the last isoscalar factor on
the rhs in Eq. (19) reduce to 1 [cf. Eq. (138) of Ref. 28].
The remaining isoscalar factors that involve irreps (1) and
(0) are easily evaluated [cf. Eq. (145) of Ref. 28]

/l (1> v f;, 172
G (0) A)=(N‘v_ﬁ) ’ @b
so that
U Y (MDA ) () (V') _pa
_[ ML '”(M) (u) a(V))
N, fo Sy 4) WHB)
= U YY)V ) )p_ _as (22)

where we used the symmetry relation, Eq. (137) of Ref. 28,
in the last equation. The resulting relationship generalizes
that of Eq. (148) of Ref. 28. It is important to note the fol-
lowing.

(1) Only one box is involved in subductions from (v} to
(v} and from (u) to {u'}, so that

N,=N,+1, N,=N, +1. (23)

Consequently, the isoscalar factor appearing in Eq. (22)
corresponds to a fundamental shift

(V) =(v) —(A(7)), (24)
where
(A(7)) = (010) (25)

with 1 occurring in the 7’s place.
(2) The 1, factor appearing in Eq. (22) is equivalent
with the corresponding 7, factor for Sy, namely,

((/1) (p) a(V))z([/ll [e] ] alv]
1) WHlB) (A1 [wBIV]

We thus find that this I, factor is equal to a U(n) Racah
coefficient times a simple factor depending on the dimension
and particle number of the S, irreps involved.

(3) The bottom row labels of the isoscalar factor in Eq.
(22),1i.e., 4, u', and v/, are of course the irreps of U(n — 1)
or Sy _ ;. However, they must be regarded as the U(#n) or
U(n — 1) irreps in the Racah coefficient in Eq. (22). [ Note
thataU(n — 1) irrep can always be regarded asa U(n) irrep
but not conversely. ] This reflects a basic fact that the Young
diagram labeling of U(#n) irreps is n independent as long as n
equals or exceeds the number of rows in the Young diagram.

Exploiting, finally, the relationship between the 7, and
I, isoscalar factors for S, Eq. (6), we can rewrite Eq. (22)
in the form

(41 galain)

= U @) (DY ) e —a

with N, =N, +1and N, =N, + 1. Thus a general Sy
subduction factor [i.e., a special transformation factor for
U(n)] is identical with a special U(#n) Racah coefficient, in
which one of the six irreps equals to the fundamental irrep

(1.

). (26)

(27)
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C. General relationship between isoscalar factors and
higher-order U(n) invariants

Consider next a more general case when more than one
box is removed from a given irrep of U(n). We recall that in
a general I, factor

(5wl
1 M Vl.,

we remove f;, f5, and f(

= f; + f>) boxes from the Young

diagrams representing the irreps 4, u, and v, respectively,

obtaining the irreps 4,, &, and v,. Likewise, a general /,
factor has the form

7 av)
(l 1By,

with fboxes removed from both g and v irrep labels. We
shall consider the case in which v is obtained by coupling
{v,) with the symmetric representation { /'), i.e., (v) results
by adding of fboxes from {f) to {v,). The Littlewood—
Richardson rule then requires that no more than one box is
added to any column. Invoking, thus, Eq. (13) and setting
(we drop again the angular brackets)

A=/ /14 =f2’ Aw=f=fi+/l
while

Hi3=A;3=pand py, =0,
we get

XA fis fshioAssAa fA) - _a —ac ,

_ (:{11 h ‘/112)(:{13 b2 /134)(412 Az

L 014/, 014, /A4, A4,

since X(A4,04,0;4 445;4,50;4,5) = 1, and the last two isosca-
lar factors on the rhs of Eq. (13) also equal 1 implying that
py=A and p3 =23, p, = p, =0, and B3 = a3 = 5. The
first three isoscalar factors appearing in the resulting Eq.

(30) and involving the trivial scalar irrep {0} are given by a
simple expression [cf. Eq. (154) of Ref. 28],

G V) , HA)I/Z
ol ' H,]’
with H, given by Eq. (5'), since N, + f = N, . Exploiting

this formula and relabeling the irreps to obtain a more sym-
metric form, we get

(28)

(29)

A

A f)
Ay O

al
apis

), (30)

31

(j. 7 av) HH.H, ([)]
1 M1 BV, H Hg /i
XX S [5Amsvi fv) — _p_as (32)
with
Nv =Nv, +f; N/l =N/1. +.f1’ Nu =Nu, +.f2’
and
f=hH+1

We thus find that a general isoscalar factor is equal to a
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special 9j-type (i.e., 91) symbol times a factor involving di-
mensions and corresponding particle numbers [cf. Eq. (5)]
for the corresponding S, irreps. Again, the resulting rela-
tionship, Eq. (32), is rank independent,

At this point, we must note that Eq. (32) represents a
generalization of an earlier result by AliSauskas, ef al. [see
Eq. (B1) of Ref. 41], which is easily obtained from our gen-
eral result when one of the irreps is totally symmetric, e.g.,
() = (p) and (u,) = (g) with p — g = f;, so that

(j ")z[ S fi, NN, Ipif! ]"’
1 4 Si L NN, (gl (p — g)!

XX(A, £,9(p — @);Ap;v, fiv)
_[ H.H, 1 (p)]”z
| HH A\

X XA, £19(p — q);Ap;v, fiv).

Thus our general result shows that the relationship between
an arbitrary U(n) isoscalar factor I, and a special 91 sym-
bol, Eq. (32), has a universal validity and is not restricted to
the multiplicity-free cases examined by Alifauskas et al.*!
We can likewise generalize the relationship given by Eq.

(33)

(22), setting f; = 0in Eq. (32),sothat f, =fand A,, =4,
obtaining
A u av) H.H,

T U(/l VEVIL) g _as (34)
(/1 By, HH, “vivipt) g

where we used Eq. (17), and where N, =N, +fand N,

= N, + f Theisoscalar factor on the Ihs has now the same

form as the I, factor, so that we can exploit Eq. (3), obtain-
av

ing
(/l E )= UAuvfivi)g_ _q-
#i 1By,

This relationship generalizes that of Eq. (27) for the Sy
isoscalar factor 7, to an arbitrary 7, factor for U(n). Thus a
general U(n) I, factor, that describes a subduction from the
Gel'fand-Tsetlin basis to a partitioned U(n, + n,)
DU(n,) ® U(n,) basis, is identical with a special Racah co-
efficient involving the coupling of an f box totally symmet-
ric irrep { f).

(35)

D. Racah and 9A coefficients for many-electron
systems

In our recent paper,”® we have explored the U(#n) tensor
algebra that is relevant for many-electron systems. We de-
rived explicit algebraic expressions for U(n) isoscalar fac-
tors that involve at most two-column irreps.?*3° Exploiting
the above given relationships, Eqs. (32) and (35), we can
now obtain corresponding Racah and 94 coefficients that
arise in applications to many-electron systems. Thus, for ex-
ample, Eq. (35) gives immediately that

U((a,b) (d — 1,e) (5,1) (1,0);(s — L,t) (d,e))
- (de) | (s1) ) _
- ((a’b) s—10) ="

(d - lae)
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where we employed the shorthand notation of Ref. 28 for
two-column irreps, i.e., (a,b) =(2°1%0). In Eq. (36), the to-
tal particle number Nequals 2a + b + 2d + e = 25 4 t. The
other nonvanishing Racah coefficients and 94 symbols are
given in Tables I and II, respectively. Note that any column
(row) of Table I is normalized, while the entire Table II is
normalized, as required. Note also that all the absolute val-
ues of these coefficients depend only on the lengths b, e, and y
of the single-column part of the Young diagrams involved,
while the two-column length appears at most in the phase
factors.

lil. UNITARY GROUP FORMALISM FOR MANY-
ELECTRON SYSTEMS AND ITS SU(2) COUNTERPART

It is well known that the S, U(n), and SU(2) descrip-
tions of the many-electron correlation problem for spin-}
fermion n-orbital models are very closely related. Each for-
mulation has its own merits and their interrelationship
brings often a deeper insight into the problem, enabling a
formulation of efficient algorithms for large scale numerical
computations of accurate energies and wave functions of
various models employed in studies of many-electron sys-
tems. %3

In this section, we thus turn our attention to the two-
column irreps of U(n) that characterize the so-called uni-
tary group approach (UGA) to many-electron correlation
problem.®’> These applications often involve unitary
groups U (n) of a fairly large rank n, since a large number of
atomic or molecular orbitals may be required for a reliable
and accurate model description of such systems, particularly
when the number of electrons N that are involved is large as
well.

From the formal viewpoint, this special case represents
a multiplicity-free variant of the general formalism, and as
such facilitates the discussion while providing us with some

new insights into the structure of the general U(n) Racah—
Wigner algebra. It is thus useful to examine directly the rela-
tionship between the U(n) tensor algebra and the SU(2)
based formalism.

An n-orbital spin-independent model of any many-elec-
tron system is characterized by the U(#n) irrep (2°1%0) with
a =N — Sand b = 25, where Nis the total electron number
and S is the total spin of the state considered. An important
feature of higher-order U(n) invariants for N-electron sys-
tems is their orbital and particle number independence. Let
us first illustrate this fact on the case of Racah coefficients,
showing that their absolute values only depend on the spin of
relevant irreps. '

A. Spin-dependence of U(n) invariants

Consider a general Racah coefficient [cf. Eq. (129) of
Ref. 28]

U((2°1%)(2919) (2*1”) (251%);(2°1*) (2*1))
= U((a,b) (d,e) (x,y) (g,h); (5,) (u,0)). (37

The particle numbers involved satisfy the following rela-
tions:

2a+b+2d+e=254+1t (spa-+d), (38a)
25+t+28+h=2x+y (x>g+5), (38b)
2Zd+e+2g+h=2u+v (u»d+g)), (38c)
2ut+v+2a+b=2x+y (x>a+u). (38d)

Exploiting the recursion formulas for Racah coefficients,
Eq. (11), for the following choice of irreps:

M= (a - I!b)) Moz = (u,v), n= (x_ lsy)s
we get that

i
) (x,y) (a,b) (u,v))
U((a,b)(d,e)(x,y)(g,h),(s,t)(u,v))((x_ i)l @—18) (up)
(a,b)  (de)|(s;))((s,0) (&h)| (xp)
T X )
y:,;;u.z (e ol PVttt (460)) (@a—16) pp, lpp/\pg, d; [ (x—1p)
((d,e) (&h) (u,v))
X
223 ds 1 (u,)
_ _ _ e (ab) (de)| (sD) )( (1) (&h)| (xp) )
= UW(a — 1,b)(d,e) (x — 1,y) (gh);(s l’t)("’v))((a—l,b) derls— 1LoNGs -1 @l ox— 1))

(39)

TABLE 1. Racah coefficients U{(a,b) (d,e) (x,») (0,1);(s,2) (u,v)) for the two-column U(n) irreps (a,b) =(2° 120), etc.

(s,0) (wp) =(d+ le—1) (u,0) = (de+ 1)
(x—1y+ 1D A[(bretyrie—biptD]" e L A
2 (e+ D+ 1) 2 (e+ D+ 1
ey —1) (=D)erd+ersr(htre—y+1)(b—ety+1) ]~ 1 (b+e+y+3)(e—b+y+l)]‘“
* 2 e+ D+ 1 2 e+ 1Dp+1)
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TABLE I1. 94 coefficients X((a,b)(0,1) (d,e)(0,1);(s,2) (4,0);(x — 1,9)(1,0);(x,p)) for the two-column U(n)irreps(a,b) = (2 180), etc.

(s,0) (o) =(d+1le—1) (u,v) =(de+1)
@t1b—1) (=D [(b+te—(btet+ty+2)]” —(=D+> [(b—e+y)(e—b+y+2) 72
' 2 206+ D(e+ 1) 2 2+ e+ 1)
(@b+1) — (=1t erstr 1(h_eqyt2)(e—b+y) ]2 (-7 (b+e+y+4)(b+e--y+2)]V2

2 2(b+De+ D) 2

200+ e+ 1)

The explicit expressions for the isoscalar factors appearing
in this equation were given in Ref. 28. In particular, we
have®® o

((u,v)

(a,b) (x,») )_ [a(a+b+ 1) 12
(u,v)

(@—1,6)1(x—1p))  Ix(x+y+1)
(40)

which implies that Eq. (39) represents the following simple
recursion formula:

U((a,b) (d,e) (x,p) (g,h);(s,t)(u,v})
= U((a - lab) (dye) (x - l’y) (g!h);(s_ 19t)(u9v))‘
(41)

Using successively this formula and the symmetry proper-
ties of Racah coefficients, we finally arrive at

Ul(a,b) (d,e) (x,p) (8,h);(s,t) (u,v))
= U((o’b) (d,e) (x —a - g9y) (O,h);

(s — a,t) (u — gv)). (42)
As will be shown later, we can also remove the “two-column
part” from the second irrep (4,) = (d,e), obtaining finally
U((a,b) (d,e) (x.y) (g,h);(s,t) (u,0))
= U((Osb) (O,e) (X —a— d - 8:)’) (O’h);

(s—a—dty(u—d—guv)). (43)

Thus, the two-column parts of the three primitive irreps,
namely {(1,) =(a,b), (1,) =(d,e) and {1,)=(g,h), can be
excluded from our considerations so that the values of the
corresponding Racah coefficients will only depend on the
spin of these primitive irreps.

At this point, it should be recalled that in our recent
derivations of the algebraic expressions for the U(n) isosca-
lar factors (cf. Appendix of Refs. 27 and 28) we have ex-
ploited the fact that the transformation coefficients relating
the canonical and partitioned bases are independent of the
two-column parts, which can be regarded as consisting of
doubly occupied orbitals. This fact, that greatly facilitated
our derivations, immediately follows from Eq. (43) since
both the I, and I, factors can be represented as Racah coeffi-
cients, as shown in the preceding section. In view of this
result, our earlier derivations could be further simplified.

Another useful corollary of Eq. (43) results when one of
the primitive irreps (a,b), (d,e), or (g,h) contains only the
two-column part, in which case the relevant Racah coeffi-
cient is equal to 1. Thus, for example,

U((a,0) (d,e) (x,) (g,h);(s,t) (u,0)) = 1.

This corollary also immediately yields Eq. (36).

So far we have only discussed the properties of Racah
coefficients. However, the same results can be derived for
higher-order invariants as well. Indeed, the 94 symbols (or
X coefficients) are expressible in terms of Racah coefficients,
so that their values will only depend on the spins of primitive
irreps while being independent of the orbital and particle
numbers.

(44)

B. Recursion formulas for Racah coefficients

Let us now derive some useful recursion formulas for
Racah coefficients involving two-column irreps. We can re-
strict our attention to the coefficients appearing on the rhs of
Eq. (42). Exploiting again Eq. (11), as well as the symmetry
properties of Racah coefficients, we can write

|
) (xy) |(st)  (Oh) )
U((0,b) (d,e) (x.p) (0,h);(s,1) (u,v))((x’y Dl ©0h—1)
_ _ . _nfde)  (0h) (u,v) )((O,b) (,v) (x.9) )
= U((0,b) (d,e) (x,y — 1) (0,h — 1);(s,8) (u,v 1))((d,e) O — 1) (ww— DO (o — 1)y — 1)
+ U((Oyb)(d’e) (xyy - 1)(0!h - 1);(5,1)(11 - I,U + 1))
><((d,e) (0,h) (u,0) )((O,b) (u,0) ‘ (x.y) ) 45)
(d)e) (O’h_l) (u—l,v+1) (O’b) (u—lsv+l) (xyy_l) )

Substituting the known expressions for the isoscalar factors [cf. Table II of Ref. 28 or Table I of this paper for Racah

coefficients together with the relationship (34)], we get

U((0,6) (d,e) (x,) (0,h);(5,) (u0)) [40(v + 1) (v + 2) (h — t + p) (h + t + y +2)] /2

= U((O)b) (d9e) (xay - 1)(O’h - l);(s’t)(uyv - 1))

X[(w+2)(h—e+v)(h+e+v+2)(b+v+y+2)(0—b+y)]'?
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+ ( - 1)d+e+xU((09b) (d,e) (x,}’ e 1)(Osb - l);(s)t)(u + lav - 1))

X[v(h+e—v)(e—h+v+2)(b+v—y+2)(b—v+p)]"2

(46)

Note that we have used Eq. (38c) which implies that ( — 1)*+? = ( — 1)¢, thus simplifying the phase factor in the last term.

In a completely analogous way, we obtain

U((0,b) (d,e) (x,9) (0,4);(5,8) (u,v))[4v(v + D0+ 2)(h+t—p)(t—h+y+2)]/?
= U((0,b)(d,e) (x — 1,y + 1) (0,h — 1);(5,8) (.0 — DY) — 1)+ “[(v + 2)(h — e+ V)
X(b+v—y)(h+e+v+2)(b—v+y+2)]"*+ U((0,b)(de) (x — Ly + 1) (0,h — 1);(s,8) (u — Ly + 1))

X( =D+t yhte—v)(v—b+y+2)(e—h+v+2)(b+v+y+4)]Y2

Using Egs. (46) and (47), we can now recursively
evaluate any Racah coefficient involving two-column U(n)
irreps, starting with the simplest Racah coefficients given in
Table I. As an example, we present Racah coefficients with
h = 2 in Table II1.

We wish to stress again that in Eqs. (46) and (47),
similarly as in Table I, the variables d, s, «, and x, that char-
acterize the two-column part of the coupled irreps, can only
appear in the phase factors. Moreover, the phase factors ap-
pearing in these formulas, namely (—1)9+°+7%
(—1)e*+*+* and ( — 1)?*+*+**+* are invariant with re-
spect to an arbitrary shift of the two-column parts, i.e., to the
transformation

d-d—r,
Consequently, both

§—8S—T, U—U—T, X-X—T. (48)

(47)

r

U((0,6) (d,e) (x,y) (0,h); (s,2) (4,0))
and
U((0,b)(d — 7.e) (x — 7.y) (0,h); (s — 7,8) (u — 7,0))

satisfy the same recursion formulas, Eqs. (46) and (47).
Since they also involve the same starting point, Table I, we
can conclude that Eq. (43) holds.

As already mentioned in the Introduction, there is a
close relationship between the Sy, U(n), and SU(2) based
approaches to the many-electron correlation problem. The
above presented developments reveal an explicit form of this
connection. In particular, we note that:

(i) The absolute values of simple U(n) Racah coeffi-
cients, Tables I and III, are identical with the SU(2) Racah
coefficients. In particular,

TABLE III. U(n) Racah coefficients of the type U((0,b) (d,e) (x,y) (0,2);(s,t) (4,v}) involving two-column irreps (s,2) =(2°1* 0), etc.

(u,0) (s,0)=(x,y—2)
(de+2) l[(e—b+y)(b+e+y+2)(e—b+y+2)(b+e+y+4) 2
' 4 (e+1(e+2)y(p+ 1)
(d+1e) (—1)dte+= [(b—e+y)(e—b+y)(b+e+y+2)(b«1—e—y+2)]"2
’ 2 2e(e+2)y(y+ 1)
(d+2e—2) _1_[(b—e+.v)(b+e—y)(b+e—y+2)(b—e+y+2)]"2
’ 4 e(e+ Dy(y+1)
(u,v) (5,2) = (x—1,y)
(de+2) — (=Dt b+ b te—p+2)(e—b+y+ 2 (b+e+y+4)]"
i 2 2(e+ 1)(e+2)y(y+2)
(d+1le) e(le+2) +y(y+2)—b(b+2)
’ 2[ele + 2)p(y + )17
(d+2,e—2) (= DTrer= [(b+e—y)(b—e+y+2)(b+e+y+2)(e—b+y)]"2
’ 2 2e(e+ )y(y+2)
(u,0) (50) =(x—2y+2)
(de+2) L[(b+e—y)(b—e+y)(b+e—y+2)(b—e+y+2) 172
’ 4 e+ 1(e+2y+ D +2)
(d+ Le) —(—1)‘”"*"[(b+e—y)(b-—e+y+2)(e—-b+y+2)(b+e+y+4) 12
’ 2 2e(e+2)(y+ 1D(p+2)
(d+2e—2) i[(e—-b+y)(b+e+y+2)(e~b+y+2)(b+e+y+4) 2
’ 4 ele+ DN+ DP+2)
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|U((a,b) (d,e) (x,9) (8,1);(5,) (u,0))|

=‘@(£ ey 1.t 1)

=J(t+D@+1) (49)

o= e

t

2

L
2

R ve

and
|U((a,b) (de) (x,9)(8,2);(5,8) (u,0))]

=‘@(.’i,i,_y_,1;_’_,i)
2 2 2 2°2

A
2

=y(+1Dw+1)

£
2 ) (50)
P

e N~

1
2

where Uand % designate the U(n) and SU(2) Racah coef-
ficients, respectively. The above relations also show the con-
nection with the usual 6/ symbols.

(ii) The SU(2) Racah coefficients satisfy a number of
recursion formulas, which enable their efficient evaluation.
The above presented recursion formulas, Eqs. (46) and
(47), for the U(n) Racah coefficients involving two-column
irreps are again identical with the corresponding SU(2) for-
mulas, except for the phases involved. For example, Bieden-
harn’s formula [cf,, e.g., Eq. (6.3.5) of Ref. 42]

U (o diz J12J23) (223 Clizs + 1) (2ns + 1) (s —Jio + ) G + s +7 + D12

. 1 1

= (- 1)2j'+2""{@(11’12s1 ——Ja— ot — 7)[(]23 + D (js—ja+in)(fa+js+js+1)

2 2

X Gy +im+i+ D)o —jr + )1 — %(11,12,1 5= 5

X JasCz +is —da3) U —Js +dos + 1) Uy + oz —j + 1) Gy — s +f)]‘/2] ,

is equivalent with Eq. (46), except for the phases, which can
be either opposite for the two terms on the rhs asin Eq. (51),
or the same in view of the extra factor ( — 1)?*** *in the
second term on the rhs of Eq. (46).

We can thus conclude that up to the phase factors, the
U(n) Racah coefficients, as well as the higher-order invar-
iants (which are expressible in terms of Racah coefficients),
that involve at most two-column irreps which are relevant in
many-electron problems, are identical with the correspond-
ing SU(2) invariants, In fact, in view of the Clifford algebra
UGA representation*? of U(#n) states, we can expect that the
Racah coefficients involving k-column irreps will behave
analogously as the SU (k) invariants.

IV. DISCUSSION

This paper contains two distinct types of results, which
we discuss in turn. The first one involves general relation-
ships between various U(n) and S isoscalar factors and
higher-order U(n) invariants, while the second one investi-
gates an explicit form of the relationship between the U(#n)
and SU(2) approaches to the many-electron correlation
problem.

Let us first stress the striking simplicity of the relation-
ships which relate various U(n) and S isoscalar factors
with U(n) Racah coefficients or 94 symbols, as well as an
equally striking simplicity of the derivation of these resulits.
Although it is expected that higher-order invariants do re-
duce to lower-order ones when one or more irreps involved is
a particularly simple one, it is indeed surprising that any
U(n) isoscalar factor is just a special Racah or 94 symbol.
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r

Moreover, an analogous relationship must exist for any
group (considering finite-dimensional irreps), although it
may not be as simple as for the U(n) case considered, since
the isoscalar factors and higher-order invariants used are
defined analogously for any group chain. It is worth remark-
ing at this occasion that very recently LeBlanc and Bieden-
harn* found that the two classes of isoscalar factors (projec-
tive operators) can be related with the 94 symbols. This
result was obtained using the vector coherent state tech-
nique*** for the U(3) DU(2) chain and its validity was
conjectured for the general U(n) DU(#n — 1) case. We also
note that the approach employed in this paper is very similar
to the so-called *“build-up procedure” for the isoscalar fac-
tors and recoupling coefficients.** Finally, we must caution
the reader that throughout this paper we assume that the
rank 7 of U(n) is sufficiently large so that U(n) possesses all
the irreps with a given N (equal to the number of boxes in a
Young diagram labeling a given irrep), determining in turn
Sy, which may be rather small. Consequently, minor adjust-
ments may be required when applying these results to U(n)
groups with small rank, in which case certain irreps (or cor-
responding terms containing them) may have to be omitted
should their row number exceed n.

It thus remains to discuss the relationship between the
U(n) and SU(2) approaches, which is relevant to special
two-column irreps characterizing the many-electron corre-
lation problem. In view of the UGA formalism,*'® we can
call this relationship a conjugation property and assume its
validity in general. Moreover, we expect that, for example,
the U(n) Racah coefficients involving three-column irreps
and the SU(3) Racah coefficients will be identical (up to the
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phase) in case when no multiplicity arises or can be so cho-
sen even when multiplicity does occur. In fact, this conjuga-
tion property is implied by the Littlewood—Richardson
rules. It is well known that the outer-product reduction
[A) ® [p]1[v] is identical with that for the conjugate reps,
ie., [A]® [2]4[¥]. Although the corresponding U(n) ir-
reps (A ) and (A ) have different dimensions, the result still
holds. In fact, since Racah coefficients represent transfor-
mations between different coupling schemes and are inde-
pendent of the chosen basis, we can choose the Wey! tableau
Win Eq. (9) [or, similarly, in Eq. (12)], representing the
final coupled state, to be a special Gel’fand basis vector*
with all orbitals singly occupied. Then, all other Weyl tab-
leaux labeling various coupled states must also correspond
to special Gel’fand states, and the coupling reduces to the Sy
case, in which the outer product coupling coefficients for
mutually conjugate irreps are identical except for the phase,
and so are the final Racah coefficients. In the particular case
of two-column irreps, when the relationship between U(n)
and SU(2) is involved, we can understand this conjugation
property in view of the following facts: (i) primitive irreps
A,A,,45 can be reduced to single-column irreps, (ii) the cou-
pling of three single-column irreps is conjugate to that for
three single-row irreps [they are, in fact, SU(2) irreps] and,
finally, (iii) U(n) isoscalar factors for coupling of two sin-
gle-row irreps to a two-row irrep are just the SU(2) CG
coefficients and similarly for higher-order invariants. Note,
however, that in the general case, coupling of two-column
irreps can yield a three-column one, requiring the knowledge
of SU(3) quantities, or a four-column one, when SU(4)
comes into play.

We note, finally, two implications of the present results
for future work: (i) It enables a novel approach to the evalu-
ation of U(n) isoscalar factors. For example, knowing the
SU(3) Racah coefficients, we can obtain (similarly as
above) the U(n) Racah coefficients involving three-column
irreps, which in turn will yield U (n) isoscalar factors involv-
ing three-column irreps using general relations established
in Sec. II. (ii) It enables a canonical solution to the multi-
plicity problem, since we can exploit the conjugation proper-
ty to define the multiplicity labels. Thus, for example, be-
cause the SU(3) tensor operators have been completely
evaluated and classified (cf. e.g., Ref. 45), the corresponding
multiplicity problem for the three-column U(#) irreps may
be resolved in a conjugate scheme. This fact is of consider-
able practical significance, since in actual applications the
number of columns in each irrep is determined by the phys-
ics of the problem (e.g., two column irreps for }-spin sys-
tems,® four-column irreps for i-spin-isospin systems,'
etc.). Clearly, a major existing problem is an easy determina-
tion of relevant phase factors. ‘
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On some Racah coefficients of U(n)
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Some U (n) Racah coefficients appearing in various applications of vector coherent state and
K-matrix theories are calculated: For such a purpose, use is made of their definition in terms of
U(n):U(n — 1) reduced Wigner coeflicients and U (n# — 1) Racah coefficients. By starting
from known U(2) Racah coefficients, the recursion relations obtained are solved by induction

over n.

I. INTRODUCTION

During the last few years, the vector coherent state'”
and K-matrix?>~ theories have played an ever-increasing role
in the representation theory of Lie algebras (see Refs. 5and 6
and references therein). Indeed, their combination provides
a simple systematic way of determining the explicit matrices
for the ladder irreducible representations (irreps) of all clas-
sical Lie algebras in bases that reduce their u(n) or gl(n)
subalgebra.

In all cases, the analytic formulas or numerical algor-
ithms obtained contain some U(#n) Racah coefficients. Al-
though the values of most of the coefficients are given in the
literature, some are unknown. The purpose of the present
paper is to calculate some Racah coefficients appearing in
various applications of the vector coherent state and K-ma-
trix theories.®’

In Secs. II and III, we respectively prove the following
results:

U([101,[10 — 11, [ £+ A1, [ f.s
[101,[fl.(o=1)
=[(n—Dn(n+ Dg([f1)]"?

n

X Zf,.—n(f.-—i+1)]

j=1

(1.1)

and
U([1%01,,[10 — 11, [ f + AP, ) 1, [ f s
[20],[f1.(p=1))
=[2(n— gL f1)] [ fi=fi+j—i—1)
X(fi=f+j—i+ 1] (1.2)

where the U coefficients are Racah coefficients in unitary
]

il. PROOF OF EQ. (1.1)

form.*® By using the symmetry properties of (1.2) (Refs. 8
and 9), we obtain the relation

U(Lf+ A%, )1,10—-2),[ f1,[10—11,;
[£.1(e=DI[0(-1)],)
= —[2(n+ DgUf1) ][ fi=Fi+i—i=1
X(fi—f+i—i+ 1] (1.3)

which was proved for n = 3 and surmized for higher values
of n by Rowe et al.®

The notations in Egs. (1.1)-(1.3) are defined as fol-
lows. The U(#n) irreps are characterized by partitions into #
integers [ fl, =[], fizfaz:-">f,. An overdot
over a numeral implies that this numeral is repeated as often
as necessary. The symbols A" (i) and A? (i, j), respectively,
denote row vectors of dimension n with vanishing entries
everywhere except for the components i or i and j, which
have value unity. All couplingsin (1.1)-(1.3) are multiplic-
ity free except for that of [ 10 — 11, with [ /], giving [ /1,
which has a multiplicity of n — 1 for the genericirreps [ f],,:
The multiplicity index p =1 (corresponding to g =1 in
Louck and Biedenharn’s notations'®) refers to the case
where this coupling arises from the matrix elements of the
SU(n) generators E; — n™'6,3; Ey;, i, j = 1,...,n. Finally,
the rhs of (1.1)-(1.3) contain the function

gf1)=n"" S =HUi—f;+2%—20D), (14)

i<jf
which is the eigenvalue of the SU(#) Casimir operator
n n 2
G= Y E,.J.Ej,-—n_'(z E,,-) (L.5)
Li=1 i=1
corresponding to the irrep [ f],,.

The proof of Eq. (1.1) is based on the definition of U(#) Racah coefficients in terms of U(#n):U(n — 1) reduced Wigner
coefficients and U(n — 1) Racah coefficients, which in the present case reads as

U([101,[10 — 11, [ £+ A() 1, [ £1.:5(101, [ f1. (o = 1))

=3 ([10],[m"],_ 1;[10 — 11, [m®1,_ | {101, [m"?], _,)
X([l()]n [m(lz)]n— l;[f]n[m(S)]n—l“[f+ A(l)(i)]n[m]n—l>

* Director of Research, F.N.R.S.
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X([lo— l]n[mu)]n——l;[f]n[m(s)]n—1”[f]n[m(23)]n—l)p=l
X([lo]n[m(n]n—l;[f]n[m(z:”]n—l”[f+ A(”(i)]n[m]n——l)
XU([m(l)]n—l [m(Z)]n— 1 [m]n—l [m(S)]n—l;[m(lz)]n-— 1 [m(23)]"_ 1 (p = 1))‘ (2'1)

On the rhs of Eq. (2.1), the U(n — 1) irrep [m],_,=[mm, --m,_,] is kept fixed, while the summation runs over
(M1, _y, [m?),_y, [m®],_,, [m"®1,_,, [m®],_,;inthe U(n — 1) Racah coefficient, the multiplicity index p = 1is
required only when [m®], _, = {10 — 1], _,, since the remaining recoupling coefficients are multiplicity free.

To reduce the number of contributing terms in Eq. (2.1), it is convenient to choose for [m],_, the highest weight
U(n — 1) irrep contained in [ f+ AV (i) ],:

[ml,_, =[f+AYWD],_,, ifin,
=[f]n—1’ ifi:n’ (2.2)

where [ f1,_1 =[ /i /o> f._ 1] and AV(i) is now a row vector of dimension #n — 1. The U(n — 1) irreps corresponding to
such nonzero terms are listed in Table I. For i < n, there are only two contributing terms, while for i = » there are five, the first
four of which contain a summation overj = 1,...,n — 1.

Among the four types of reduced Wigner coefficients appearing on the rhs of Eq. (2.1), three belong to the class of
fundamental reduced Wigner coefficients and can be easily evaluated by using the Biedenharn and Louck pattern calculus
rules.!! The remaining reduced Wigner coefficient, corresponding to the coupling of [ 10 — 1], with [ £],,, can be determined
from the results of Louck and Biedenharn'® or directly calculated from the known matrix elements of the U(n) generators in
the Gel’fand basis.!?> On the other hand, the U(n — 1) Racah coefficients are either of the same type as the U(n) Racah
coefficient of the lhs of Eq. (2.1) or have a trivial value, because one of the coupled irreps is [0],_ ;.

Hence, Eq. (2.1) leads to the following recursion relations for the Racah coefficients:

n—1
(n = DR =R S ) = (S - =1, i<m, (23)
j=1
n—1
(n— DR, ([£1,) =nA([f],.)(z f—fo 4 n—i— DB (Lf e OR(Lf— AV, 1)
=1
n—1 n—1
+Eﬁ—(n—-l)f,.—l-Z(n—l)z—l)—(Zf,—(n—l)f..—n), (2.4)
ji=1 Jj=1

where R, ([ f1,), A([ f1,),and B;([ f1,_,) are, respectively, defined by

R/([f1,) = [(n—Dn(n+ D[ f1,)]1"720([101,[10 — 11, [ f+ AP ], [ £1,:[101, [ 1. (p = 1)), (2.5)

n—1
ALSfI) =] (S —fo+n—k=D(fi—f, +n-B""], (2.6)
k=1
and
n—1
Bl )= [(f—fi+k—i=DCf—fi+k—D~"] @7
k=1
k#j

By starting from the well-known U(2) Racah coefficients and proceeding by induction over n, it can be shown that the
solution of Eqgs. (2.3) and (2.4) is

R([f1) =3 f;—n(f,—i+D), (2.8)

i=1

TABLE 1. The U(#n — 1) irreps which give nonzero contributions to the rhs of Eq. (2.1) when [m], _, is chosen according to Eq. (2.2).

i [m(li]"‘l [m(Zl]“__l [m“ﬂ],,v| [mm],.-| [m(‘.’:lblnwl

i<n (101,_, [10—11,., (101, _, Ul Ul
(101, _, [01._, (101, , Ul 1.

i=n [101,_, (1011, , (101, . = a"™pl,_, U= a"Nl._,
(101,_, [61,_, [161,_, [P} F—a"(hl,_,
[11,_, [0-11._, (01, [P LF— a1,
[01,_, (o1, _, (101, _, —av(pl._, Ul
(01, [01,_, [01,_, 1. Ul
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therefore leading to Eq. (1.1). The proof of Eq. (2.3) is straightforward, while that of Eq. (2.4) proceeds as follows. After
introducing the value of R; ([ f— A™(j )], _,) coming from Eq. (2.8) into the rhs of Eq. (2.4) and after recombining the
various terms, one obtains the relation

(n = DR, ([f1,) = nd(Lf], )[—(n—l)"fB([fln_.)+("ffk n—l)f,,+(n—1)2—1)

k=1

n—1 n—1

XS G—hotn=i= DBl + 3 f— (= f, +2n = 1?1

=1 =1

n—1

—(Zj;—(n—l)f,,—n). (2.9)
=1

Thetwosums ofthe B; ([ f],_, ) functions can be easily evaluated using the complex function residue theory'? and are given
by

n—1

; Bi([fl.-1)=n—1 (2.10)
andj_

:}":'(f A== DB (SNl = [AU 1] — @11
respectively. By taking Egs. (2.10) and (2.11) into account, Eq. (2.9) can be transformed into the relation

(n—l)R,.([f],,)=(n—1)(:2:5-—-@— f, +n(n—1)), (2.12)

thus completing the proof of Eq. (2.8).

iil. PROOF OF EQ. (1.2)
The proof of Eq. (1.2) proceeds in the same way as that of Eq. (1.1). We therefore start from the definition

U([10],[10 — 11, [+ AP(i )1, [ £1,5[201, [ £ 1. (p = 1))
= S([1%0], [m™], _5[10 — 11, [m@], _, {201, [m"®], _,)

X ([201,, [m"?], _ ;[ 1, [m®), _ |Lf+ A% [m], )

X ([10—11,[m?], _ ;[ £1.[m™), _ £, 1m™],_ ),

X ([120], [m "], _ ;[ 1, [m™], _ |Lf+ AP 5) ], [m], - )

XU([m“)]n—l [m(Z)]n-l {m],_, [mm]n—ﬁ[m(m]n—x [m(23)]n~— 1(p= 1)), 3.1

where we take, for [m],_ ,, the highest weight U(n — 1) irrep contained in [ f+ A®(i,j)],:

[m]n—l = [f+ A(Z)(i’j)]n—l’ if i<j<n,
= [f+A0)],_,, ifi<j=n. (3.2)

The U(n — 1) irreps corresponding to the contributing terms in Eq. (3.1) are listed in Table IL. For i <j < n, the ths of Eq.
(3.1) comprises a single term, while for / <j = n it includes five terms, the first two of which contain a summation over
k =1,...,n — 1, k #i and the third a summation over k = 1,...,n — 1.

Among the four types of reduced Wigner coefficients appearing on the rhs of Eq. (3.1), two belong to the class of
elementary reduced Wigner coefficients and are given in Ref. 11, another involves the totally symmetric irrep [20], and is
calculated in the Appendix, while the remaining one corresponds to the coupling of [10 — 1], with [ f], and is evaluated as
explained in Sec. II. On the other hand, the U(n — 1) Racah coefficients fall into four categories: (i) coefficients of the same
type as the U(n) Racah coefficient of the lhs of Eq. (3.1), (ii) coefficients given in Eq. (1.1), (iii) coeflicients that can be
calculated from those given in the Appendix of Ref. 14 by using some symmetry properties®® of Racah coefficients, and (iv)
coefficients that have a trivial value because one of the coupled irrepsis [0], ;.

By taking the above results and Eq. (2.7) into account, Eq. (3.1) can be put into the following form:

R;([f1)=Ry([fl._1), i<i<m, (3.3)
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TABLE II. The U(n — 1) irreps which:give nonzero contributions to the rhs of Eq. (3.1) when [m],_, is chosen according to Eq. (3.2).

ij [m",_, [m?],_, (m'?],_, . [m®],_, [m®],_,
i<j<n (1’01, -, (10-11,_, (201,_, ‘ .- U
i<j=n (1’1, _, (16-1],_, [20],_, A"k, - a%m1,.,
(o1, _, [0-1l._, (101, _, Ul -,
(10, _ (101, -, [201,_, - A"k, Ul
(101,_, [10—11,_, (101,_, Ul A
[103,_, (0. (10, Ul -,

n—1

k=1

Rm([f1">=ci<[f]n>(— S U —fot k=it O f—fy+n—k—= D] [(f—fu + k=D

ki

XSy = fi+ k= i+ 2] B (Lf1,_ ORa (Lf— A, )
n—~1 '
=23 Bl ) -G —fi—i+D) i<j=n

k=1

where R; ([ f1,) and C; ([ f],) are, respectively, defined by

R,(1f1)=R,;([f1,) =[2(n—Dg[f1)]"?

XU([1%0], [10 — 11, If + AP, )1, [ £1,:1201, [ f1. (o= 1)), i<),

and

CUSfl)=—-[fi~fu+n—i=D(fi—1, +n—i+1)"']”2

X TLIe —fu+n—k=D(fi —fo+n=k"].
ki

By induction over n, it can be shown that the solution of Egs. (3.3) and (3.4) is

R, (A1) =[U—f+i—i=DUfi—f+j—i+ D]

(3.4)

(3.5)

(3.6)

3.7)

hence leading to Eq. (1.2). In the case of Eq. (3.4), after introducing the value of R, ([ f— A"(k)],_ ) coming from Eq.

(3.7) into its rhs and after recombining the various terms, one obtains the relation
n—1

Ra(LS12) =C,-([f],,)(§_: fi=f A k=D itk =i+ D™ Be([f1,-0)

ki

n—1

—(fi—=fitn—i+ ) SSfi—fi+k=D[(fi~fi+tk—i+D(fi—f,+n—k-D]"!

k=1
k #i

n—1
XBk([f‘]n—l)—'sz Bk([f]n—-l)— (f; _.fn _i+ 1)),

where the three sums of the B, ([ /], _, ) functions are given by

n—1 « ) ’
SUi—fitk=DUfi—fe+tk—i+ DB flo)=n—2,
k=1 .
k#i

S fo A k=D —fe b =i+ Dfe=fy +n—k= D] B([f1u )
k=1
ki

= —[Ui=fitn—i=DUi=f, +n =i+ DTPCAS1]T -1,

(3.8)

(3.9)

(3.10)

and Eq. (2.10), respectively. Equations (3.9) and (3.10) can be directly derived from Egs. (2.10) and (2.11) by changing
n—1linton—2andf, - -f, _,intofy' f;_fir1 " f,_ . Their substitution into Eq. (3.8) finally completes the proof of

Eq. (3.7).
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APPENDIX: U(n):U(n—1) REDUCED WIGNER COEFFICIENTS INVOLVING THE IRREP [20], .
According to Table I1, three different types of U(n):U(n — 1) reduced Wigner coefficients involving [20], appear on
the rhs of Eq. (3.1), namely

(1201,1201, _ I AL LA Lu LS+ ARG D1 L+ AP, )],y ) for i<j<n,
(1201,[201,_ ;[ f1.[f — AP ], _, | [ f+ ARG 1, [ £+ AD(D], _,) for ik<n,
and

([201,1101, _ ;L1 LS La ML F+ ARG 1L L f+ AD(WD ], _,) for i<n.

Since the first of the above coefficients is trivially equal to 1, we are only left with the calculation of the remaining two, which is
the purpose of this Appendix.
This calculation can be easily performed by using the relation

([2()]n[m(n)]n—l;[f]n[m(3)]n—I”[f+ A(Z)(ian)]n[f-i- A“)(i)]n—1>
= [U([101, 1101, [ f+ A?(im) 1, [ £1,;1201, [ f+ AD(m)1,)] !

X 3([10], [m"1,_;(101, [m®], _,]|[201, [m"?],_,)

X{[101, [m®),_ ;[ f 1. [m®),_ L+ AV ()], [m™], )
X{[101, [m™"1, _ ;[ f+ AV(m) ], [m™], i | Lf+ APGEm L, [f+ AV D], )

XU([m“)]n—l [m(Z)]n-l [f+ A(”(i)]n-—l [m(3)]"_ 1 ;[m“z)]n—l [m(23)]n—l)r (Al)

resulting from the definition of the U(n) Racah coefficients and the orthogonality properties of U(n):U(n — 1) reduced
Wigner coefficients. In Eq. (A1), all couplings are multiplicity free and on the rhs the summation runs over [m"], _,,
[m?1,_,,and [m*],_,. .

For [m'?],_, = [26]..—1’ (m,_, =[f- AYK)],_,, as well as for [m"?],_, = [1_0],1—1,
[m®1,_, =1[f],_,, the sum contains a single term corresponding to [m™"],_, =[m?],_, =[10],_,,
[m®),_, =[f1._i,and [m"],_, =[10],_,, [m®],_, = [0],_,, [m®],_, = [ f1._,, respectively. Since all the
reduced Wigner coefficients are fundamental ones and are given in Ref. 11 and since the U(n) and U(n — 1) Racah coeffi-
cients can be determined from those calculated in the Appendix of Ref. 14 by using some symmetry properties®® of Racah
coefficients, it is straightforward to obtain the following results:

([201,1201,_ ;[ f 1. Lf— AR L, 1L f+ AP Gm) 1, [+ AV (D], - )
= (- 1)""‘“'[(ﬁ—fk +k—i+D(fi—fo+n—i-1)
X[(fi—fi+k—i+D(fi=fi+n—i+D(fi—f, +n—k—-1]""'
X("I_I' f,—fe +k—j+ DU —fo +k—j>—') ("ﬁ' f—fotn—j= 1S —, +n-,-)—')]'” (A2)

i=1 j=1
Jxk i
and

([2o]n{10]n—l;[f]n[f]n—-l”[f+ A(Z)(i’n)]n[f+ A“)(i)]n—l>
= (- 1)"“[(ﬁ A== D= fy +n—it D ("f['u; ~fuAn—j= D~ +n—j>—')]'”.

i=1
J#ti
(A3)
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Remarks on tensor operators
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The notion of an algebra of tensor operators for a simple Lie algebra is discussed. A model for
the finite-dimensional irreducible representations of sl(4) is constructed. Explicit Wigner
operators acting on the model are defined. Striking commutation properties for these operators
are conjectured that resolve a sequence of nontrivial multiplicity problems.

1. INTRODUCTION

Evidence is presented that a theory of tensor operators
of sl, can be built that is analogous to that found recently for
sl, in Refs. 1 and 2.

Progress for sl; was based on a close study of commuta-
tors of sl; Wigner operators that revealed a simpler pattern
than might have been expected. This paper initiates a similar
study for sl,. We present the first computational evidence
that simple patterns exist for sl, as well. We remain far from
a definitive result.

Section II is a mathematician’s view of the first goal of a
theory of tensor operators, namely the construction of a suit-
able “algebra of tensor operators” for each simple Lie alge-
bra. The algebra will be an algebra of linear endomorphisms
of a ““model” for the irreducible finite-dimensional represen-
tations of the Lie algebra. (A model contains each isomor-
phism type with multiplicity one.) Certain of the tensor op-
erators are called “Wigner operators.” The problem is to
find enough natural Wigner operators. It should be empha-
sized that this view is only a small part of a vast program
initiated by Biedenharn that has regrettably attracted less
attention from mathematicians than from physicists.

In Sec. I1I a model for the finite-dimensional irreducible
representations of sl, is constructed. The model is realized as
the null space of a family of polynomial differential opera-
tors. Two commutative algebras, each isomorphic to the
shape algebra of sl,, act on the model. Together they gener-
ate an algebra D, analogous to a Weyl algebra. I would guess
that the desired algebra of tensor operators would be found
within D. This suggests an avenue of investigation for sl,, .

Section IV presents the computational discoveries for
sl,.They are that the commutators of certain Wigner opera-
tors are themselves (unexpectedly) Wigner operators. Iter-
ation of commutators thus produces a sequence of Wigner
operators that, since they belong to spaces of multiplicity
two, resolve a sequence of multiplicity problems. Since the
Wigner operators are presented in Sec. IV as differential op-
erators in 14 variables, the computations are too lengthy to
be done by hand. The results of Sec. IV were both discovered
and verified by massive computation on an IBM 3081 using
the software REDUCE. It is in the nature of things that the
computer suggests more than it proves; so I have had to
phrase the results as conjectures with given computer evi-
dence.
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1l. THE PROBLEM

Let g be a simple complex Lie algebra.

Choose a Cartan subalgebra # of g, and let P be the
group of weights of ( g,/1). Let P, be the set of dominant
weights relative to some ordering on P that we fix once for
all. For each AeP, _, let W, be a simple g module of highest
weight A. For each AeP—P__, let W, =(0). Let
W= o ,.p W,,sothat Wis amodel for the finite-dimension-
al irreducible representations of g. We will write
gCEnd (W) (a slight abuse of notation) and view
End ( W) as a g module via the adjoint action of g, the usual
way.
yWe next define some terms that have become more or
less standard in the physics literature but are unfamiliar to
most mathematicians.

The elements of End.. ( W) are called tensor operators.
Since every linear endomorphism of the model W is ad-
mitted as a tensor operator, the notion is not very restrictive.
Part of the problem is to restrict it.

Let T be a tensor operator.

We say that T is a A-shift operator for
AePiffT(W,;)CW, , , forall AeP. It is a shift operatoriffit
is a A-shift operator for some AeP.

Wesay that T'is a A operator for AeP_ | iff T generatesa
simple g submodule of End¢ (W) with highest weight A or
T = 0. Itis irreducible iff it is a nonzero A operator for some
A€P_ ; thus, T is an irreducible operator if and only if T
generates a finite-dimensional simple g submodule of
End¢ (W).

We say that T'is a Wigner operator iff T is an irreducible
shift operator or T = 0. We will say that T'is of type (4 ) if T
is both a A-shift operator and a A operator. A complete
Wigner operator is a simple g submodule of End. ( W) that is
generated by a nonzero Wigner operator. It carries the type
of its nonzero elements.

Note, for example, that g itself is a complete Wigner
operator, effecting shift A = 0.

It is known that there exist nonzero Wigner operators of
type (%) if and only if A is a weight of W, .

The first problem in the subject is that of constructing a
suitable subalgebra 4 of End (W). (The literature suggests
that once A4 is got right, physicists would restrict the word
“tensor operator” to mean an element of 4.) The vague word
“suitable” is not defined, but can be taken to include the
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following points.

(i) 4 should contain g (and hence contain a copy of the
universal enveloping algebra of g.)

(ii) Every endomorphism of every finite-dimensional
subspace of W should lift to an element of A4.

(iii) 4 should have a basis consisting of Wigner opera-

tors. Equivalently, 4 should be a diréct sum of complete’

Wigner operators.

(iv) The commutant of g in 4, which is the (commuta-
tive) algebra of elements of A4 that act as scalar multiplica-
tions on each W, should be manageable. Probably it or a
natural quotient of it should be isomorphic to a polynomial
ring in rank(g) variables. (It can be extended as needed.)
Note that this commutative algebra can be described as the
algebra of all Wigner operators in 4 that are of type (3).

(v) Let B(4 ) be the space of Wigner operatorsin 4 that
are of type (3 ) and of g weight A. Then B(4) should be a
free B(J) module of rank equal to the multiplicity of the
weight A in the representation W, . This property reflects
the fact that the multiplicity of W, as a g submodule of
Hom¢ (W,,W,, , »), viewed as a function of u for fixed A
and A, attains a maximum equal to the multiplicity of the
weight Ain W, .

(vi) The multiplication law in 4 should be surprisingly
simple. Though this is vague, it is important. I do not know
how to be precise here. I will just give an example of the kind
of phenomenon I am looking for. Let U, ¥, be complete
Wigner operators of types (3), (4). Then the g module
[ U, V] that is spanned by the commutators of elements of U
and ¥ need not be simple. It may contain any or all irreduci-
ble constituents of W, ® W, for which § + A is a weight.
Nevertheless, for many U and V in 4, the module [U,V]
should be smaller than the previous sentence might suggest.
This is a “property” possessed also by the universal envelop-
ing algebra of g.

The only cases I know of for which such an algebra 4
has been constructed are those of g =sl, and g =sl,. For
g = sl, there are several candidates for 4, including a Weyl
algebra and some quotients.of the universal enveloping alge-
bra of sl,. The main result of Refs. 1 and 2 is the construction
forg = sl; of an 4 that is a quotient of the universal envelop-
ing algebra of so;.

The common feature in these constructions is that the
generators for 4 are represented by nice formulas, essentially
polynomial differential operators, acting on the model W,
which is a subspace of the symmetric algebra of the sum of
the fundamental representations of g. This motivates the
construction of the model for the representations of sl, that is
presented in Sec. III of the present paper.

It is possible that 4 can be generated by a well-known
Lie algebra that has a basis of Wigner operators, but I would
expect such a Lie algebra to be infinite dimensional for
g=sl,,n>4

In all my work I have started with the vague property
(vi) above. In Sec. IV of this paper I will present computa-
tional evidence that something can be done with property
(vi) in the case g = sl,. More precisely, I will find some pairs
of complete Wigner operators U, ¥V for which [ U, V] is (un-
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expectedly) a simple g module (and is hence a complete
Wigner operator. )

1il. A MODEL FOR THE REPRESENTATIONS OF sl

Henceforth we will be concerned only with the Lie alge-
bra g = sl, of 4X4 complex matrices with trace equal to O.
Denote by 4 the Cartan subalgebra of diagonal matrices in g
and by n the subalgebra of strictly upper triangular matrices
in g. We write E,, for the matrix all of whose entries equal 0

"except for the ijth which equals 1.

The group P of weights of ( g,#) will be identified with
Z*/{(1,1,1,1)) as follows: For A = (m;mym,m,)eP and
H = Zh,E;ch, define A(H) = Zm;h,. Take the ordering on
P determined by the Borel subalgebra b =hen. Then
(mm,ymymy)eP, _ if and only if m,>m, ., for 1<i<3.

The principal result of this paper is the production of
complete Wigner operators ¥V, for sl, of type

( n 0 n n)

n+l1 n n—1 0
for n>1suchthat [V, .V, ] =V, .

All'g modules that concern us will be spaces of polyno-
mials and of polynomial differential operators. For conven-
ience, we adopt the notation X to indicate the formal differ-
ential operator d /dx with respect to a variable ¥. Thus, for
example, [X,x] = 1 and [X,5] =0.

We first produce a model for the finite-dimensional irre-
ducible representations of g. Begin with the defining g mod-
ule W' = C*% which has highest weight @, = (1000). Let
W,= A*W, and W;= A*W,, simple g modules whose
highest weights are the other two fundamental dominant
weights @,=(1100) and @,= (1110). Let
C=Sym(W,e W,o W5).

* Let {a;},..cq be the standard basis of W,. The g action
on W, can be described by the formula E; = a,g; for i+ j.
Write a; for a;Aag;, 1<i<j<4, and write a; for
a;Na; Aay, 1<i< j<k<4. The space C is nothing but the
polynomial ring in the 14 independent commuting variables
a;, a;, a;. . It is easy to work out explicitly the action of g on
this ring. It is through polynomial differential operators as
follows:

E; = a,a; + ayay + ayl; + 6,85,

for ijkl a permutation of 1234,

where for I’ a permutation of I whose sign is €, we let
a,; = e€a;.

Let A = (mnp0)eP, ,,and let x; = a7~ "a};” ?a5,,€C.
Let W, be the g submodule of C that is generated by x,.
Clearly x, is primitive (i.e., annihilated by n) of weight A, so
that W, is a simple g module of highest weight A.

Let W= @ ,.p _ W;,sothat Wisamodel for the irre-
ducible representations of g.

There are two naturally occurring commutative alge-
bras of linear endomorphisms of W that I want to describe
next.

Define the ten shujffle polynomials in C as follows.
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A= —a;,03,+ 013054 — Ay30,,,
B, = a,a;3 — a,a,3 + axay,,
B, =a,0,, — a,a,, + a,a,,,
B; =a,a3, — a3a,, + a,a,;,

By = a,a;, — a3, + a4a5;,

C) = a128134 — Q13824 + Q1413
C, = a120534 — Ap30154 + Q248133
C; = 030,34 — 530134 + 348,23,
Cy = 148534 — A240134 + Q34124

D = a,a,34 — a,8134 + 838,54 — 040133.

Both A and D are annihilated by g. The four B, and the
four C; each span four-dimensional g submodules of C. The
shuffle terminology derives from Ref. 3, where a combina-
torial description of the shuffie polynomials can be found.

Let 7 be the ideal in C generated by the ten shuffle poly-
nomials. It is a g submodule of C.

Let E'be the polynomial ring in the 14 commuting vari-
ables @;, a;, ;. Define the shuffle operators A,B;,C,Dto
be the elements of C derived from the shuffle polynomials by
replacing the as by @s. Let 7 denote the ideal in C that is
generated by the ten shuffle operators.

Proposition 1: The ideal I is a vector space complement
to the model Win C. In other words, C= We Il

Proposition 2: W = { geC | fg = 0 for all feI}.

Proposition 2 is very useful because the definition of W
was so indirect.

Proposition 1 goes back at least to Hodge.* The quotient
C /1, which is the coordinate ring of an affine flag variety, has
been called the shape algebra in Refs. 5 and 6. Proposition 2
may be known, too, but I have been unable to trace it in the
literature.

From Propositions 1 and 2 we can derive actions of the
(isomorphic) quotient rings C /Tand C /Ton W. Let Dbe the
subalgebra of End ( W) that is generated by C /Tand C /1.1
would suggest that D merits close study. The algebra D, or
something very close to it, may provide the suitable algebra
A of Sec. 1I. Since shuffle operators and the natural analog of
Proposition 1 are known for sl,,, one can formulate Proposi-
tion 2 and try to construct D for sl, . For sl,, D will equal the
A of Ref. 7.

There is a subalgebra of D that also deserves attention,
namely F, the algebra of endomorphisms of W that are re-
strictions to W of polynomial differential operators d in the
variables a;, a;, a; such that d(W) C W. For sl, there is
equality F = D but this is not so for sl;. The precise relation-
ship of D to Fis worth determining. Nearly all my calcula-
tions have taken place within F. F contains the A4 for sl,
constructed in Ref. 2.

We turn to the proofs of the propositions. They will be
based upon an explicit determination of the algebra of primi-
tive vectors in C.

Lemma: Let X, =a,, X, =a,, X;=a,5;, X;=A,
X;=B,X;=C, X, =D, X3 =4a,C, —a,C,.

(i) f(q) = 0 for all fen and qeCl X].

(ii) The X; are algebraically independent elements of C.
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(iii) C is generated as a g module by C[X];
C[X] ={geC|ng=0}.

Proof: Part (i) follows from the computation
E, (X;) =0forj<kand 1<i<8.

Each of the formulas for the polynomials in the se-
quence X, X,, X, X, X4 Xg, X5, X, involves at least one
variable not present in any of the earlier formulas; one may
take the sequence of new variables to be a,, a,,, a,53, dy3, 414,
@534, 4, A3, Part (ii) follows.

In view of (i), the two statements of part (iii) are equiv-
alent. In view of (ii) they can be proved by showing that the
dimension of the space of homogeneous polynomials belong-
ing to C of fixed degree d equals the sum of the dimensions of
the simple g modules generated by the monomials in the X;
that are of degree d in the a variables. We omit the details.

Proof of Proposition 1: C[X]1CI+ W,and I+ Wisag
submodule of C (because  and W are g submodules. ) There-
fore, by part (iii) of the lemma, I + W = C. We will show
that IN W = (0) by constructing a homomorphism ¢ with
domain C such that IC ker(¢) and WN ker(¢) = (0).

Let C[ y] be the polynomial ring in the twelve variables
Vs 1<i<4, 1<k<3. We give C[ y] the structure of g module
via the formulas E; = 2} _ ,y, J; for i j.

Define an algebra homomorphism ¢:C—C[ y] as fol-
lows:

#(a;) =y,
$(a,) = det Cil J’rz) ’
n Yp
Yn Yo JVa
#ay) =detlyqn Vo Vs
k1 Yz Y3

Since ¢ is a g map, its kernel must be a g submodule of C.
By Sylvester’s identities, ¢(X;) =O0fori=4, 5, 6, 7 and so
IC ker(¢). Because ¢ is nonzero on each monomial in the
first three X, alone, W, N ker(¢) = (0) for all AeP, .
Therefore, WN ker(¢) = (0).

Proof of Proposition 2: To show that
WC{qeC|lg=(0)}, it suffices to show that
{ geC|Iqg = (0)} is a g submodule of C that contains all the

monomials ay'a},af,;. This is so because the shuffie opera-
tors, which generate 7, span a g subspace of C and are easily
seen to annihilate all the a7"a}, a%,;.

Now consider the reverse inclusion,
{ ¢eC |Iq = (0)} C W. Since both sides are g modules, it will
sufficc to prove that {geC|Ig=(0) and

= (0)}C{ geW |ng = (0)}. By the lemma and the defin-
ition of W, the inclusion to be proved is
{ ¢eC[X]|1g = (0)}CC[X,, X,, X;].

Let geC[X] and suppose that ¢ is annihilated by all ten
shuffle operators. We must prove that ¢ is a polynomial in
the variables X, X,, X, alone.

The elements of T act on C[X] as differential operators
in the X, with coefficients in C. They can be worked out
explicitly. We present four of the formulas that will get the
proof started. In each case I describe an element of 7 by
giving its effect on the monomial IT}_,X;". We let
Eq=3a,C; — a,C el
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A:(m, + my + mg + mg + mg + 2)X, — X, X, XX,
63132?477 - a124X1/—Y6:‘77 - Xz(Xl‘_X-'sx,s + 7}?4%
CoX XXX, — XXX,

Esz((ms +ms+m,+ X, + X877)7477'

The equation E4(g) = 0 can be shown to imply that
X@E(q) = 0. It follows immediately, then, from C,(¢q) =0,
that X,X,(¢) =0. Next, the equation C,(g) =0 implies
that — X, X.Xs(q) = X;X,(¢), which combines with
A(g) =0 to prove that X,(g) = X,X,(g) =0. Thus the
variable X, does not occur in g.

The rest of the analysis is similar. The equations
C,(q) = 0and D(g) = 0 now imply that X, and X are ab-
sent from ¢ as well. At this point we know that ¢ is a polyno-
mial in X, X,, X5, X5, Xg and tha_tXSX’G(q) = 0. Itis an easy
matter to use C, to prove that Xs(g) =0 and to use B, to
prove that X;(gq) = 0.

IV. THE DISCOVERY

‘We can now present the main construction of this paper.
Let

v, = (1 4+ Gy)a,a,, + Ma;, — Nay,,

where

G, = a,a, + a,a, + a,3; + a,d,,
M=a,,(a,G,; — a;8,; — a,a,,)
+ a13(a,8,y5 + G,8y; — A,48,,4)
+ a14(a,8y4 + 4,854 + 0385,),
N = ayy;3(a,83 + a3y — 0,35,4)

+ @124(@,814 + Q5854 + a383,).

After verifying that [ 7, v,] lies in the left ideal of
End,. (C) that is generated by 1, we can assert (by Proposi-
tion 2) that o, (W)CW and therefore write
v,€FCEnd (W). A computation shows that v, commutes
with 7 and is a Wigner operator of type

WDm+n+2,m+nm+n—-2,0,w,=usv.

Let ¥, be the g submodule of End (W) that is genera-
ted by v, Define V,=[Vi,Va_1] and
v, = [Ey 0,5 Espv,_ ] forall n> 1. Note that v, eV,,.

Conjecture:

(1) ¥V, is a complete Wigner operator of type

(n 0 n n)
n+1 n n—1 0/’

and v, is a vector of highest weight, for all 1,

Q) [Vos Va] =Viynrallm, n>1.

(3) [E21 Vs Espv, | = [Es 0y, Ejpv, |, forallm, n>1.

I have verified on the computer using REDUCE conjec-
ture 1 for n<5, conjectures 2 and 3 for m 4+ n<4 and (m,
n) = (1,4).

It follows from the  conjectures that
[E21Vp> Exzv, ] = €up¥pn 4  fOr some ¢, #0€Q. By defini-
tion ¢;, = 1; and the conjectures imply that ¢,,, =c,,,. I
have verified that ¢,, = 1.

The conjectures resolve a sequence of multiplicity prob-
lems in the following way. Fix n, and let
A,=(n+1,nn—1,0)eP, . Let A=(1, 0, 1, 1)eP.
Since the multiplicity of the weight #A in the representation
W, is 2, the multiplicity of W, in Homc (W, W, | ., ) is
equal to 2 for generic i. Thus it is not at all clear how to find
an irreducible subspace of Hom¢ (W, W, | ,,) that has
highest weight 4,,. I propose taking ¥, . A choice of ¥, for
n = 1 had to be made, but the other ¥, are then generated
automatically.

We proceed to describe the computer verifications of the
conjectures.

For n>1, let U, be a simple g module of highest weight
(n+1,n,n—1,0). We ask for those simple g modules of
U, ® U, that have (m + n, 0, m + n, m + n) as a weight,
since they and only they could potentially arise in the com-
mutator [ V,,,, ¥, ]. The list is not long and is independent of
(m, n). Let u, v be highest weight vectorsin U,,,, U,. We list
the five relevant dominant weights and the six correspond-
ing primitive elements w; of U,, ® U,:

@ m+n+lm+n+l,m+n—2,0),w,=Ejuev—uxkE,p.
(i) ( m+n+2,m+n—-1,m+n—10),w;,=Eu®v—uekE,,u.

v Y(m+n+1l,m+nm+n—-10)

ws = — 3(E21u ®E321) + E32u ®E210) + (E32E2|u RV + u ®E32E21v) + (E21E32u QU + u ®E21E32”).
w, = (B, u®Eyv— Esu®E, v) — (BB, u®@v— u® E5E, v) + (B EjLuev—ue B, E,Lv).

Vv (m+nm+nm+n0)

ws = — 3(u@EyEy EpEy v + E By EjEru®v) + 3(Ey u® EyEs By + EynEy Eypu e Ey )
+ 3(E;1E5Er 4 @ Espv + Esyu ® By \E5yEp ) + (EspEpu® By Esyv + Ep Eyyu ® B Fy )

- 2E32E21u 8 E32E21v - 2E21E32u @ E21E32!).
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Now make the substitutions ¥ —»v,, and v+>v,. Then  and
conjectures 1 and 2 amount to the assertions that under the ws= — 12(u ® (EsEyy )0 + (EpE,)u®v).
maps V,, @V, ~Endc (W), aepfi~[a, f], we have I simply checked on the computer that
w=w,=w,=w, =ws=0 and w, =Av,,,, for some
A #0eC. Note that in the case m = n, then w,, w,, and ws are [u,v] =0, [E)u,v]=0, [Eynu,v]=0,
zero automatically because they are symmetric tensors. [Ey4,Espv) + [Esyu, Eyv] =0,

Further, if w, = 0, then

e T [ (EnaBz) ] + [(Eyary)u, v] =0,

w; = 2E;u®0, It would have been sufficient to verify only the second,

w, =2E5ueu, third, and fifth of these last five equations.
and
'L. C. Biedenharn and D. Flath, Commun. Math. Phys. 93, 143 (1984).
w, = — S(E,ju® E,v + E5u® E, ). 2D. Flath, and L. C. Biedenharn, Can. J. Math. 37, 710 (1985).
3K. Baclawski, SIAM J. Alg. Disc. Meth. 3, 592 (1982).
If *W. V. D. Hodge, Proc. Cambridge Philos. Soc. 39, 22 (1943).
w, =w, =w, =w, =0, then *J. Towber, J. Algebra 47, 80 (1977).
¢J. Towber, J. Algebra 61, 414 (1979).
w, =6E, u®E,v= —6E,,u®E,v 7D. Flath, L’Enseignement Math. 29, 339 (1983).
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Moment invariants [functions of the moments of a Vlasov distribution that are invariant under
Sp(6)] are classified using Young diagrams. The connection between the moment invariants
and the Poincaré invariants is established. An application using the moment invariants as
phase space coordinates is considered for a matching section in a particle-beam accelerator,
and a Lie-Poisson numerical integration algorithm for the moment dynamics is proposed.

I. INTRODUCTION

For particle beams accurately described by the Vlasov
equation, the moment description is useful since the mo-
ments correspond to laboratory quantities. For example, in
1D, the moments consisting of the beam centroid (g) and
the rms width Sqrt({g?)) are measurable quantities, where
the brackets denote integration against the particle distribu-
tion. The rms emittance Sqrt ({g*){(p*) — (pg)?) is invar-
iant under linear symplectic motions. In Lysenko and Over-
ley,' generalizations of the rms emittance in 1, 2, and 3 D are
presented, which are also moment invariants (i.e., also func-
tions of the moments that are invariant under linear mo-
tions). In addition, they find an infinite number other mo-
ment invariants and suggest, in the context of a matching
section, that these would provide useful variables for de-
scribing beam dynamics.

In this paper we use the Lie-Poisson structure of the
Vlasov equation as discussed in Marsden et al.,> and show
the moments to be a projection of the particle distribution
determining Lie-Poisson dynamics dual to a subalgebra or
quotient algebra of the algebra corresponding to the group of
symplectomorphisms. The new phase space for the Vlasov
equation is the symmetric tensor algebra over single particle
phase space. In this setting a complete list of tensor invar-
iants is provided, which explains and extends the moment
invariants found in Ref. 1. Hilbert’s theorem on polynomial
ideals shows? that the moment invariants depending on mo-
ments of order k or less are finitely generated, suggesting a
numerical integration algorithm that uses the generators as
beam coordinates.

Il. THE MOMENTS

Let Z=R3*XR? with usual symplectic two-form
o =32,J; dZ NdZ, where

Jz(—ol g)

is the symplectic matrix. Let u be a distribution that rapidly
decays at infinity, and f'a real-valued function on Z. Let ¢ be
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a symplectic map (@ *o = @) and define Ad,f=f-@ and
@ *1u(2) = p(p(2)) for zeZ.
Define

= [ 1

The change of variables formula is (Ad, /)., = {(f), so
that
(Ad,, 1), = (Ad, [ pupr e = Foe 1w =g o
and (f), can be thought of as a tensor in f'with u fixed or a
tensor in u with f fixed that transforms contragradiently.
For a collection of functions f, their product I1,f’ trans-
forms according to Ad,(ILf") =1II,(Ad.f"), so that
(I1,f"), transforms as a tensor product under the Kron-
ecker representation of Ad,,.>

Consider those f’s that are linear functions (eZ *) and ¢
in the linear subgroup Sp(6). Then u defines a linear func-
tional X 5: S*(Z*)—R given by

XESNEV - = [

on decomposable elements, and hence an element
X% S*(Z*)* = S*(Z). Here, S “(Z) denotes the symmet-
ric k tensors and f' V f? the symmetric tensor product, cf.
Ref. 4.

Here, X *e S *(Z) transforms contragradiently to those
in S*(Z*) and so transforms under the Kronecker repre-
sentation ( ® S)* for SeSp(6). Then, X ¥ comprises the k th-
order moments of the distribution x. For the classical mo-
ments, choose a basis z‘, i = 1,...6 of Z*. Then, the basis
elements of S*(Z*) are of the form z"V.-+- Vz* and the
value of X % on this element is its component

X [ty

a k th-order moment. In particular, X 'eZ is the center of
mass.

The space of moments of signed distributions is the sym-
metric tensor algebra S=S(Z) = & ,,,.5 *(Z), and we refer
toapoint X = @ ,,, X * €S as a moment or its moments. In
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all that follows, when a tensor has one index, that index
indicates the tensor’s rank. Otherwise, the notation is stan-
dard. The brackets (), indicate integration against a distri-
bution while {,) denotes the pairing between a space and its
dual such as between contravariant and covariant tensors.
Distributions are assumed to be non-negative in that integra-
tion over any subdomain should be non-negative; otherwise
the distribution functions are referred to as signed distribu-
tions. Einstein’s summation convention is used throughout.

Haviland® demonstrates necessary and sufficient condi-
tions for a given set of moments to have arisen from a (non-
negative) distribution. Let PES(Z *) correspond to the for-
mal power series X (P, ® ,z). The summation is over the
rank, k, going from 1 to infinity while each term is

(Po»®,2) =P, 2" 2" Let PX=3,_, (P, X*) be the
truncated sum. Here, X is said to be non-negative if P ¥>0
whenever 2 ,_, (P,, ® ,2) >0 for all zin Z and all n. Havi-
land shows that given a set of moments X, for there to be a
corresponding distribution with these moments, it is neces-
sasry and sufficient that X be non-negative. In addition, he
establishes sufficient conditions for the distribution to be
uniquely determined from a set of moments.

The moments come about via a general construction
(Marsden-Weinstein reduction, e.g., Ref. 2) that justifies
their consideration as phase space. Consider the imbedding
ir.¥ = of a Lie subalgebra .7 of the algebra &. The ad-
joint of this map i*: % * - ¥ * is-a projection and a momen-
tum map. For the Vlasov equation 4 = C* (R*XR?) and
&* is the signed distributions. If we choose .#" to be the
polynomial algebra and ue 9 *, then i* () are the moments.
In particular, #*(u) will enjoy contragradiently any symme-
tries that .%” has. Under the isomorphism

Gr=LroI*/L*

vector fields determined by polynomials in .Z have a trivial
projection onto the second factor. Therefore the subalgebra
¥ is appropriate when the vector field can be well approxi-
mated by a polynomial one. On the other hand, if & is an
ideal of ¥, then the quotient algebra ¥/% = .¥ is a Lie
algebra. This remark has found applications in Ref. 6 for
Lie-Poisson integration of particle-beam models. Consider
the canonical projection .4 - 9 /& = .¢ with adjoint im-
bedding P*..¥* - G *. If ue%* is near the image of .£*
under P *, then .# can initially be thought of as a good ap-
proximation. However, the full dynamics might take 1 away
from P *_%* in which case we refer to the approximation .
as unstable. For example, let & be the exponentially flat
functions at the origin in Z, so that ¥ /& is the power series
algebra. Suppose that e ¥ * has support in |z|<e. Then, for
ec&, | (u,e)| is exponentially small so that initially P *u ~pu.
However this will not remain so if the vector field moves
points near the origin too far. We refer to the first case as a
global approximation and the latter as a local one.

The general problem is to construct a momentum map
(for example, the map from distributions to moments) so
that the Hamiltonian is approximately collective (in the
sense of Guillemin and Sternberg’). In the case of the mo-
ments, this implies that the Hamiltonian can be well ap-
proximated by functions of the moments.
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lll. MOMENT DYNAMICS

We begin by describing the Lie—Poisson structure of the
Vlasov equation discussed in Ref. 2. Consider the group of
symplectomorphisms of Z,¥9 = C~ (2Z), its Lie algebra,
with the dual space & * being the signed distributions. The
space C* (¥ *) is a Poisson algebra in that it is a Lie algebra
such that the bracket is a derivation. Let F,HeC* (%*),
ue%*. Then {F,H}(u)={u,[IF /9, 0H /3u]) (where [,]
is the bracket in ¢ ) determines the Lie—Poisson bracket {,}
on C* (9*). The Lie-Poisson system i = —ad*;y 5.4
becomes g = —{u,#} under the identification
p—-udVol.,, where

H(u) = f A

is the Vlasov Hamiltonian. The use of the bracket in & re-
quires the identification & ** ~ & . In this case & ** is surely
much larger than & and it is not clear what C* (& *) should
be. We try to resolve this problem by going to the formal
power series algebra. Questions of topology will be ignored
here but the topology of linear compactification could be
introduced as in Guillemin® and would still maintain many
of the important results of classical Lie algebra theory. In
this spirit, consider a graded algebra .¥ = .7, where
each summand is finite dimensional. Such a direct sum is a
graded Lie algebraif [.¥,,.%; ] C.¥,, ;_., whereeis some
constant. The subalgebra .¥, will be referred to as the core
subalgebra. Let S(.¥°) = @ 5" (.¢"), where the symmetric r
tensors of S” (.£) are to be identified with homogeneous
functions of homogeneity n on .Z*. Let u be in .¥* and
58" (.£). Then the homogeneous function on . * corre-
sponding to s is defined by 5(u) = (s, ® ,u). To write with
indices, let e; be a basis of . determining a dual basis. In
terms of these basis elements s has coefficients s" ", 4 has
coefficients u,, and 5(u) = s""”'i"y,I **-u; . The bracket de-
termined by reduction satisfies

- _ de; Je )
{eiaej}(#) - <,u) [a/_l,’al[ s

but since de,/du = e; this becomes {'é,.,éj} = [eie]. The
derivation property of the bracket determines that

S Js Js
Rt w) = <ﬂ»‘(¥: {ei’ej} 'ée—12>
s, i 8s2>

= (u,— Cje, —),
<,u de; 7k de

! f
where C§ are the structure constants of .#". It is evident that
{$™.8"}CS™+"~1sothat S(.¥) = &8" (.£) isa graded
Lie algebra with core subalgebra S' = .¢, the linear func-
tions on .Z*,

We now make the choice ., = S "(Z *), the homoge-
neous functions on Z of homogeneity n. This choice induces
another grading that has the Poisson algebra S(sp(6)) as its
core subalgebra. To see this, note that the bracket relations
satisfy [ .£,,.% ;] C.Z,, ;_, sothat .Z is a graded Lie alge-
bra with core subalgebra .# ,, the quadratic functions. De-
note by N a function on the integers with non-negative in-
teger values. Then we can write
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S"(e.L,)=eV, LN
EN(i) =n

where V is the symmetric tensor product,
FND = L V- V.L,, [N(i) times], and the sum is taken

over all such functions, &, such that ZN (i) = n. Here, N is

considered as an index. Note that this is the symmetric ten-
sor product of vector spaces not of symmetric tensors.
Hence, the result will not be, in general, a space of symmetric
tensors. As functions of .Z°*, .7, are the ith-order moments
and .M are N(i)th-order functions of the ith-order mo-
ments. For example, S e.2,)
=07 ,.L,0.L20 . Namely it is the quadratic
functions on .Z"* that are the quadratic functions of the first-
order moments plus bilinear functions of the first- and sec-
ond-order moments, plus the quadratic functions of the sec-
ond-order moments, etc. Define QV=V, ¥¥? the
homogeneous functions of homogeneity N(/) of the ith-or-
der moments. Then

S(.&) =139nQ”,

ZN(I') =n.
The Lie-Poisson bracket satisfies {QY,0*}C @, 0",
where
K(s,0)() =N + M), i#sts+t—2,
K(@s,t)(s) =N(s) + M(s) — 1, s#t
= N(s) + M(s) — 2,
K(st)(s+t—2)=N(s+t-2)+M(s+t—2)+ 1

Let I be the functional I(N) = 2,N(i)(i — 2). Then the
above relations show that (K (s,2)) = I(N) + I(M) so that
I determines the grading S(.¥) = @ ,B;, where

s=1,

B =e QN9
N.n

sz(i)=”:

I(N) =i
Because the Lie-Poisson bracket is linear in &, $°(.Z’) can
be neglected in the algebra. So can .Z, since for symplectic
motion f,u = const. However, .¥°, cannot so easily be re-

moved. The choice of origin in Z is still available and if it can
be chosen as a fixed point for the vector fields under consi-
deration, then we can consider the subalgebra

S+ = @ QN,
Nyn>1
Y NGy =n,

where Q% = V,, .Z Y 5o that we can consider functions
of second-order moments and higher. Consequently the
function 7 is non-negative determining the core subalgebra
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of & 0B, tobe By= &, .£5 where £, = sp(6), so that
B, is the formal power series Poisson algebra on sp(6)*.

IV. THE MOMENT INVARIANTS

We now describe the moment invariants (invariant
functions of the moments) for Sp(6).

A. Quadratic moment invariants

The calculation of quadratic moment invariants can be
accomplished by the use of Casimirs, cf., Micu,” who also
proves the functional dependence of a particular list of mo-
ment invariants. We proceed here with a different, simpler,
and more direct technique even if it is not applicable to high-
er-order moments.

The symplectic form weZ * @ Z * determines an invert-
iblemapj:Z - Z *by jx = w(x," ). Consider the tensor opera-
torj® i:S?(Z) — Z * ® Z where i is the identity. (No confu-
sion between indices and maps should arise from this
notation.) For X in S*(Z), the tensor X' =j®i'X trans-
forms according to

(e (ses)X=(s '®s) (e X,

for seSp(6) since s* j=js. Now (s ®s)-X’ goes to
sXs~" under the isomorphism Z *® Z~L(Z,Z), the linear
maps on Z sending X ' to X. Hence, the invariant functions of
the tensor X are tr (X" ), n = 1,2,... . The Cayley—-Hamilton
theorem says that X is a root of its characteristic polynomial.
Multiplying this equation by powers of X and taking traces
determines the tr(X" ), n> 6 as algebraic functions of the
tr(X"), n<6. Let X ¥ be the components of XeS?(Z) in the
symplectic basis e, where w(e;,e;) =J;. Then X= J; X Ik
and

te(X") =J,, X, X d, , X,

are the functions of the quadratic moments which are invar-
iant under Sp(6).

B. Higher-order moment invariants

Invariant functions of the moments are graded accord-
ing to their homogeneity N(k) with respect to k th-order
moments. Therefore, any such function is determined by an
invariant tensor in ®(SY(Z))V" = g (SI(Z*))¥?P
CT*(Z*), where I(N) = k and T* denotes the k tensors.
This can be seen as follows: it suffices to consider a form
T(X,....X) of degree k in S* (Z *). The polarization®

Dy, T=9,Ta, =k T(a\,X.X,...X)

is an invariant and the inverse is 7= (1/k) Dy, T. The com-
plete polarization Dy Dy ---Dy T is an invariant tensor
determining T to be an invariant tensor in (S‘(Z))*. The
description of such invariant tensors is most conveniently
described by Young symmetrizers and Young diagrams, cf.
Ref. 3,10. Any real analytic invariant for Sp(6,R) becomes
complex analytic upon the field extension to Sp(6,C), and
since the latter is semisimple all such invariants may be ob-
tained in this way by Weyl’s unitarian trick.>'' So from here
on we use the complex field. Then the Young symmetrizers
can be used to project the tensor space T *(Z *) onto irredu-
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cible representation spaces of the symmetric group and also
of GL(6,C). The restriction to the subgroup Sp(6) does not
preserve irreducibility and a more complicated reduction of
the Kronecker product as found in Ref. 12 is required to
deduce the irreducible representations. However, presently
we are orily interested in determining the invariant tensors

and the Young symmetrizers will suffice for this purpose. -

The symmetry class is represented by a Young diagram
(i [y ) wWhere fi3£,5 - f,,, with f, boxes in the first row,
J> boxes in the second row, etc. For example, (4,4,2,2) ap-

pears as A -

The Young symmetrizer corresponding to the diagram
is h = PQ, where P= 3 p and Q = Z_sign(q)q, where Pis
symmetrization with respect to the rows and Qis alternation
with respect to the columns. Here, A, P, and Q are all projec-
tions after rescaling and since both P and Q are equivariant
with respect to Sp(6) these projections commute with the
projection onto the invariant tensors. Since Q acting on the
invariant tensors is a projection onto tensor products of
skew-symmetric Sp(6) invariant tensors its image is the lin-
ear span of tensor products of the Poincaré invariants
o' = oM\ ANo(i times). More precisely, if ¢ is an invar-
iant tensor with diagram (f,,....f,, ) and A, is the number of
columns of length 7, then Q¢ is a constant multiple of a tensor
product of skew symmetric invariant tensors such that each
column of length i corresponds the Poincaré invariant &
In vparticular, A; vanishes for odd 7 so that

1

fi=L1>fs =fi> -+ . Forexample, Q¢ for (4,4,2,2) schema-
tically appearsas  [ulw so that Q¢ must be a multi-
i

ple of v’ ® w*® @' ® @', and the corresponding invariant
tensor is P(w® @ w*> ® o' ® w'). To explain the notation first
note that in a symplectic basis for Z, »' has the matrix
w; = J; and @* = o A o has the matrix skew (J;J, ), where
skew means to skew symmetrize with respect to all indices.
This can be written JAJ, where A is the skew symmetric
tensor product. The Poincaré invariants ' =w A Aw (i
times), written with indices, are JA -+ AJ. The columns in
the diagram above must be of even length and into each
column is inserted a Poincaré invariant of the correct rank,
and an index corresponding to each box. Then, a tensor
product of the moment tensors is formed so that each index
corresponds to a box in the diagram, and the moment tensor
index is summed against a Poincaré invariant index in each
box. There are many ways to do this and each may provide a
different moment invariant. However, some of these pro-
duce products and sums of simpler moment invariants. For
example, for the diagram (4,4,2,2) write with indices
Y = X iihi i X kike )y W where the X ’s are symmetric and
the indices of the first X correspond to the first row and the
indices of the second X correspond to the second row, etc.
Then PY = Y since the symmetries of Y correspond to the
symmetries of the diagram and the value of this basic invar-
iant is

(P(0? 80’ 00' ©0"),Y) = a4, 04, 0, 0,

XX i|i:i\i4XfJ:i.\i4X k|k:X 111:.

1613 J. Math. Phys., Vol. 31, No. 7, July 1990

When PY = ¥, we refer to the invariant as a basic moment
invariant, for which there is the special form
(8, (e0” )% ¥). On the other hand, if we consider
Y = X htx b X i X oy kike x Wk then the first term in the mo-
ment invariant is

2 2 i 1 [N 4N fus o Kk, 11,
Dijet, Pigisket, iy, Dig, X "X HXILX IR BEX O,
which is
y 602 & XXiliszni:X klk:X L,

tAa ] 282

2
@ fafs

i\jl
X}, o), XXX,

LY Y

This is a product of the basic moment invariants correspond-
ing to and
{7

Also, if we choose

Y p— X iIX i:X f\X i4Xj|ijXf\Xf4X knk:X i|i:’
then the corresponding moment invariant vanishes due to
antisymmetry of the Poincaré invariants.

As a general rule, for a diagram with

fi =fo3f, =fo> - -the tensor invariant is P( 8 , ( ® ©”?)™),
and the basic moment invariant is

(®,(80”) X/g X",
where the indices of the Poincaré invariants run from X/ to
X7 to X%, etc. so that each row of length f; corresponds to
the tensor X” by placing its indices in the boxes of that row
and each column corresponds to a Poincaré invariant by
putting its indices in the boxes of the column.

Thus, the Poincaré invariants in the single-particle
phase space generate infinite families of invariants in the
moment phase space. (However, not all of the moment in-
variants in a given family are functionally independent.)

Example I: Consider a moment invariant correspond-
ing to the diagram

(n,n,0,0,...) EEEE , where we place the indices of
only the second-order moment tensors in the boxes. Then,
this invariant must be a function of the quadratic moment
invariants from Sec. IV A

b =iy X T X J, XY, k<6

This can be seen explicitly as follows. The tensor Jin ¢,
connects the second index of the first X with the first index of
the second X. Likewise, another J connects the second index
of the second X with the first index of the third X, and so on
until finally the second index of the last X is connected with
the first index of the first X, forming a cycle of length £. Now,
place the indices of X = X ? into the boxes and, without per-
mutations, sum against the indices of (®J)". In this sum,
the first index of one X are connected by J to an index of
another X. The latter’s remaining index is then connected to
another index until the cycle (of length m suppose) closes
back to the first X, giving plus or minus ¢,, . Thus the whole
sum is plus or minus the product of some of the ¢,,,
m = 1,...,n. The same is true under permutation of the in-
dices, so that upon application of the Young symmetrizer P,
the moment invariant must be a linear combination of prod-
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ucts of the ¢,, . Since these are functionally dependent upon
é,,, m<6, we are done.

Example 2: Lysenko and Overley! show that
I, =(2 — ?)")ym is an invariant for all n, where
2=¢"+¢+qgand Z =p' + p* + p*and

3 . : .
( l'l (qk)’k (pk)lk>
sym

k=1
3 . . 3 : :
— ( H (qk)’k (pk)./k>< H (qk)!k (Pk)'k>.
k=1 k=1
This invariant is expressible as {( ® w)",X " ® X "), also cor-
responding to the diagram (n,n,0,0...) B}EE

Proof (2 —2P)' =(—Z2J;2)" =(—-D1"(H)"
since J; 70 only when i/ = j, where 1 = 4,4 =1,2 =5, etc.
Barring indices corresponds to exchanging ¢’ and p, i.e., if

2 = ¢* then 2/ = p* and vice versa. Consequently,
(f2)" =K, 2" 'JT,.i,.zi"
=(—=1D"J-

id .o .Ji"_‘:"zin .- 'Zi".
Letting 7, - - -7, be free variables and integration over the par-

ticle distribution shows that, as claimed,
A R

L, =Jy,Jy, X" "X

={(ew) " X"eX").

These two examples emphasize that the description of
moment invariants via Young diagrams refers to classes of
moment invariants rather than individual moment invar-
iants. Note that the rms emittance is the basic moment invar-
iant
corresponding to the diagram (2,2), EB ,and sois a
special case of Examples 1 and 2.

V. MOMENT INVARIANT INEQUALITIES

Dragt et al.'? show the invariants of Example 1 are non-
negative (in 1D, {(¢*){p*) — (pg)*>0 follows from
Schwarz’s inequality ). The second order moment tensor X
is non-negative and generically it is positive definite. In this
case it can be put into real normal form,' so that under a
symplecticcoordinatechange X 2 = diag(a,,a,,a3,@ ,@2,a3)
thereby determining the moment invariants of Example 1 to
be

tr(X") =2(a! + o} +a’),

for n even and zero for » odd, which provides a proof of the
Dragt et al. result since the positive definite tensors are dense
in the non-negative tensors.

The basic moment invariants depending on even order
moments can also be shown to be non-negative. In this case,
each Poincaré invariant appears an even number of times.
Consider the basic moment invariant in Sec. IV B with dia-
gram (4,4,2,2). The general case follows similarly. Consider
variable tensors x’,y",z,w’ and form the function

%) k1, Okt @y, Oy, X XX X Y Yy bz ow "
A iy 2
= (@} XYW X (w0} xV)>
This is a non-negative function and integration with respect
to the variable x over any particle distribution also produces
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a non-negative function. Iterated integration over each vari-
able against different particle distributions shows that the
mixed moment invariant,

2 2 1 1 iighiy Va7 Kk g7 L
Ojjikyt, Dijokyt, Dij, Bpj, XX NONYWIZ B ho,

depending on distinct moment tensors, X, Y,Z, Wis non-neg-

. ative, and the specification X = Y = Z = W gives the result.

The actual determination of the distribution corre-
sponding to a numerically computed moment tensor may
not be necessary since the moments are the important labo-
ratory quantities. However, it is necessary that each tensor
be the moment of a distribution. With this in mind, consider
the cone Din & * consisting of the distributions. It is closed
under multiplication by non-negative functions and is a con-
vex set. Since the coadjoint action is Ad¥u = u-g, where g is
asymplectic map, the coadjoint orbit through any element in
Dis contained in D. Consider also the cone Nin L * consist-
ing of non-negative tensors. The map i*:9* - _¥* maps
coadjoint orbits to coadjoint orbits and maps D onto N. The
conclusion is that the coadjoint orbit through a non-negative
tensor lies completely in the non-negative tensors. At pres-
ent all Lie-Poisson integrators use the coadjoint action to
generate the Poisson map.®'>'® For such schemes, this im-
plies that Lie-Poisson integration with initial value a mo-
ment of a distribution stays in the space of tensors which are
moments of distributions. Moreover, the moment-invariant
inequalities are also preserved by Lie—Poisson integration.

Vi. DISCUSSION

The evolution of a Lie-Poisson system is a Poisson map
in that it preserves bracket relations and coadjoint orbits. Ge
and Marsden'® have demonstrated a Lie-Poisson version of
Hamilton-Jacobi theory and Ge'® has demonstrated a gen-
erating function for the Poisson map that can be used to
construct Lie-Poisson integrators. Preliminary calculations
by Channell and Scovel® show that Lie~Poisson integrators
possess the same stability characteristics as the symplectic
integrators demonstrated in Channell and Scovel,'” and
therefore we propose to integrate the Vlasov equation as a
Lie~-Poisson system. A related approach can be found in
Dragt et al.'?

Dobrushin'® demonstrates the existence and uniqueness
of solutions to the Vlasov equation for both signed measures
and Baire measures. If the moment of a distribution,
XeS(Z), is integrated numerically according to
= — ad*,y 5,14, the tensor may not remain the moment
of a distribution. However, we have shown that it does so
under Lie—Poisson integration.

As an application of the phase space of moment invar-
iants we consider a matching section in a particle-beam ac-
celerator. Suppose the matching section can provide any de-
sired linear symplectic transformation; so that phase space
(defined in Sec. III) is quotiented by Sp(6). The moment
invariants will determine a good set of coordinates if the
invariants form a complete set, in that any two sets of mo-
ments with the same value for the invariants are conjugate
under Sp(6). X is said to be conjugate to Y if
X% = (®8)Y*for all k and some fixed SeSp(6).

For two moments Xand Y that come from distributions,
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the two tensors X ? and ¥ 2 must be non-negative. When they
are also definite they have real normal forms' so they are
conjugate.

Should the completeness of the set of invariants be es-
tablished, we may then consider the moment invariant dy-
namics

I={H1},

where 7 and H are in S(.Z). Since the quadratic moment
invariants describe the coadjoint orbits in sp(6)* = .2%
they are invariant under the flow generated by the full sym-
metric  tensor Poisson  algebra over sp(6)*,
S(sp(6)) = S(.Z,).

The moment invariants form a small subset of the full
algebra and they are functionally dependent. For example,
the quadrant moment invariants tr((JX ?)" ) for n>6 are de-
pendent upon tr((jX ?)") for n < 6 so that we can limit our-
selves to the latter. Likewise, Weyl® uses Hilbert’s theorem
on polynomial ideals to show that the moment invariants
which depend on & th-order moments or less are finitely gen-
erated and Schwarz'® has estimated the number of genera-
tors and relations, so one could try to find and use the gener-
ators. However, at present, these generators are not known.

Note added in proof: The requirement imposed at the
end of Sec. III—that the first moments be fixed—can be
removed by writing all moments with respect to the center of
mass, and keeping the first moments variable. Channell and
Scovel®® apply this technique to the finite-dimensional trun-
cation problem.
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Let U, = F(U,8U /3x,...,3"U /3x",t) or U,, = F(U,3U /x,...,8 "U /3x’,t) be the nonlinear
evolution equations that are the compatibility conditions between ¢, = AJ¢ + P and ¢, = A¢
for P= U(x,t) or P = U, (x,t), respectively. In this paper, it is proved that if

A(Z,,....Z, _,t,A) is a continuous function such that (d4 /3Z, ) (Z,,...Z,_ | ,;t,A) k=0,1,...,
exists (Z, = d*U /dx*), then for P = U(x,t), 4 is a polynomial in A of degree r and for the
case P=U,A=A_/A+Ay+  +A,_ A"~ ". The case where P=Z, , m>2 is also

analyzed.

I. INTRODUCTION

In a previous study, we have derived a recursive formu-
la to obtain nonlinear evolution equations that are the com-
patibility condition between

8. =AJ$ + P
and
¢, = A¢, (1.16)

where ¢, J, P, and A are nX n matrices, J is a fixed diagonal
matrix (J; #Jy;j#k), and Pis an off-diagonal matrix. We
denote that M, (C) is the space of the nXn matrices,
D,(C)CM,(C) is the space of diagonal matrices, and
7,(C)CM,(C) is the space of the off-diagonal matrices.
Let {EyeM, (C); (Ey )i = 8;8:m} be a basis of M, (C).
The compatibility condition between (1.1a) and (1.1b) is
given by

(1.1a)

A, =A[JA]+[PA]+P,. (1.2)
This equation is equivalent to the system

D, =P,PT], (1.3a)

T, =AJdT+[P,D]+P,PT]+P, (1.3b)

where P, and P are the orthogonal projections on D, (C)
and 7,(C), respectively, A=D+ T with D=P,4,
T=Pd,trD=0,and J: M, (C)-M_(C) J(4) = [J 4]
is a linear mapping that is a bijection on 7, (C). If we take
P = U(x,t) or P= U, (x,t) we get the equation

P = F(U,ﬂ,...,gﬂ ,t).

dx  Ix

In Ref. 1 we suppose that D, T, and F are smooth func-
tions on the variables Z, Z,,... (Z, =3’U/dx, j=0,1,...)
and that A = 0 is at most an isolated singularity of D and T.
Therefore, we can expand D and Taround A =0,

(1.4)

D= Y A*D,, T= > AKT,,
k= — oo
to obtain the following relations.
(i) For P = U(x,t), D is a polynomial in A of degree r
and T is also a polynomial in A of degree » — 1. Therefore, 4
is a polynomial in 4 of degree ».
(ii) For P= U_(x,t), D and T have, at most, a simple
pole at A = 0 and their regular part are polynomials in 4 of

= —
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degree r — 1 and r — 2, respectively. Hence, 4 =A4_,/4
Ao+ + AT 4, .

We assume now that if 4 is a continuous function on the
variables Z,, k=0, 1,..., and (94 /32, ) k =0,1,..., exists
then 4 and F will be C functions on the variables Z,,
k =0,1,..., and we prove in Sec. II the following.

(iii) For P = U(x,t), Aisa C* function on the variables
Z,, A k=0,1,.., AeC (4 is analytic on 4). Hence, we can
expand 4 around A = 0 and we get from (i) that 4 is a poly-
nomial in 4 of degree r.

(iv) For P= U, (x,t), A is 2 C* function on the vari-
ables Z,, A k =0,1,..., AcC \{0} and A has at most a simple
poleat A = 0. It follows then (ii) that 4 == 4 _ /A + A, + ...

+d4, A

Therefore, if 4 is a smooth function on Z,, %
=0,1,....,r — 1, then the most general nonlinear evolution
equation that is solvable by inverse scattering associated to
(1.1a) and (1.1b) for P= Uor P = U, comes from 4 in the
forms (i) or (ii), respectively, that are given in Ref. 1 (see,
also, Ablowitz?).

In Sec. III, we study the case when P=Z,, and Eq.
(1.4) becomes

P, = F(J fP f P,P,...,z)
m-times

(29) =#(u0...0)
ax™ t dx

Weshow that if the entriesof Z,, _ , are linearly independent
functions, then D, T are polynomial in A and D, 7, and Fare
functions independent of the variables Z,Z,,..., Z,,_,.
Hence, the nonlinear evolution equations related to this case
are the same as of the case P = U. As an example, when the
entries of U are linearly dependent we study the case
(O 1) ( 0 d ”‘u/&x"‘)
P=z, == ,
1 0 3™u/dx™ 0
and we show that D, T have, at most, a simple poleat A =0,
their regular part are polynomials in 4, the residues are func-
tions dependingonlyonz,, _ , and the functions D, T, and F
areindependent of z,,2,,...,2,, _ , - Therefore, the substitution
v =1z, _, reduces this case to the case v,, = F(v,0v/0x,...,t)
$0 NO new equations are obtained.

or
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il. THE SMOOTHNESS OF A ON THE VARIABLES Z,, A
k=0,1,...

We recall the definition of the operator L and the defini-
tion of a type of a function that is given in Ref. 1.

Definition 2.1: Let G be a function depending on a finite
number of variable Z, k = 0,1,..., such that 3G /dZ, exists.
Define

0G(Zo,Z, ...

(LG)(ZoZi) =3 Lz, 0.

j>0 iz

'j
Equation (1.2) is now written as

LA=AJA+[Z,,4]+F. (2.1)

Definition 2.2: We say that the function / depending on
Zy,Z,,..., is of type m and write 7 (fY) = m if

af
32,
and f depends on Z,, (if feC’, df/dZ,, #0). For f a con-
stant function we define 7( f) <O.
Remark 1: Let 7( f) = m, 7(g) = m,, and suppose that
(3f/0Z, ) k = 0,1,... exists, then the following is true.
(a) 7(Lf) = m+ 1 and

=01 j>m + 1’

m af
L= -2.z..,
f j;oazj( 1+1)

If 7( f) <0, then 7(L/f) <O.

(b) Let B: M, (C) X M, (C) be abilinear mapping, then

nB( f,8))<max{m,m,},

(c) Ifin (2.1) we have 7(F) >m + 1 then 7(4) = 7(F)

— 1,if7(F) <mthen7(4) = m — 1, and if 7(F) = m then

T(A4)<T(F) — 1.

We also need the following lemma proved in Ref. 1.

Lemma 2.3: Let AeM,, (C) and Ter, (C).

(i) If [4,T1 =0V Ter, (C), then 4 = al, in particular,
tr A =0implies 4 = 0.

(i) If [4,T)er, (C) VAeM,, (C), then T=0.

A. P=Ux0)r(F)=r
Let P= U= Z7,(C), then (2.1) gives us
L(A4)=1J4+ [Zp,A] + F

and we have the following theorem.

Theorem 2.4: Suppose 4 is a C* function on the vari-
ables Z,, k=0,1,...,r — 1, then 4 is a C* function on the
variables Z,, A k =0,1,...,r — 1, AeC.

Proof: Initially we prove by induction that (94 /9Z;)
j=01,.r—1lisConZ,,Ak=0,1,.,r—1,4eC(r>1).

(i) Taking the derivative of (2.2) with respect to Z,
yields

dA dF

9Z._, d4Z °

hence d4 /9Z,_,isC~onZ,, A k=0,1,.,r—1, AeC.

(ii) Suppose thatd4 /dZ;  ,isC~onZ,,A k=0,1,..,
r—1, AeC for 0<j<r — 2, then taking derivative of (2.2)
with respect to Z; , , we find

(2.2)
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94 04 _ .y o4
9z,  9Z;,, 9Z;
4 OF
+[z, ]+ :
“9z,,.1 9z,

S0 094 /9Z; is C~ on Zy, A k =0,1,..., AeC. Since
A(Zy,...Z, _ | ,t,A)

1
= A(0,..0,t4) + Z—A(szo,...,sz,_ LBA) ds
0o OS

lr—1 A

=A(0,...,0,t,A) + —(Z; ds,
( A) oj;o az,.( 1)

we need to show only that 4(0,...,0,5,4) is C* on A. Let
Ao(Zo,t,i) =A(Zo,0,...,0,t,l) and Fo(Zo,t)
= F(Z,,0,...,0,t). Choosing Z,=2,=:+=2Z,=0 in
(2.2) we get

AJAy+ [ZpAp] + Fy=0,
or

P,[Z,T,] =0, (2.3a)

AdTy + [Zg,Dg] + Pyl Z,, T,] + Fy =0, (2.3b)

where D, = P, 4, and T, = P4, Taking the derivatives of
(2.3a) and (2.3b) with respect to Z, and letting Z, = 0 we
obtain

P,[',To(0,t,4)]1 =0, (2.4a)
aT,(0,t,4)
AFJo i, . 0,
+ P To(040] + 2200 _g (2.4b)

0
From (2.4a) and from (ii) of Lemma 2.3 we get that
T,(0,4,¢) = 0. From (2.4b) it follows that [,D,(0,2,4)] is
C=onA. Let

Dy(064) = 3 d,(t1)E,,
J=1
with

2 d=0(trd=trD=0),

Jj=1
then

[Ejk, Do(O,t,/{)] = (dk - dJ)E,k

Therefore, (d; —d, ) is C* on A. Since
1 n

d =7z (d; —dy),

k=1
we get that d; is analytic on 4 and 4(0,...,0,;,4) = Dy(0,1,4),
isanalyticonA. If r = 0, then A isconstanton Z,, k = 0,1,...,
and 4 is equal to 4(0,...,0,2,4). O

B. P=U, (x,0,x(F)=r
Let P= U, (x,t) = Z,, then (2.1) gives us
LA=AJA+[Z,4] +F,

or
LD=Pd [ZI’T]’ (2-53)
LT=AJT+[Z,D]+P,[Z,,T]+F, (2.5b)
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and then we have the following theorem.

Theorem 2.5: Suppose that A is C~ on Z,, k=0,1,...,
then A is a C * function on the variables Z,, 1 k=0,1,...,
AeC\{0} and A has, at most, a simple pole at A = 0.

Proof (r>2): Similarly, as Theorem 2.4 shows, we can
prove by induction that (94 /9Z;) 1<j<r— 1isC~ on Z,,
A k=0,1,..,r— 1 AeC. Therefore,

A= A(Z,0,...0,t,4)
' 94

-+ "'""(Z()yszp }SZ;- 1st;/1) ds
(]
Let
AO(ZO:t"{) = A(ZO,O,...,OJ,T),
.Do(Zo,t,T) = PdAo(Zo,t,/i),

To(Zo,t,/{) = P{)Ao(ze,f’l1 ) s

and
Fy(Z,,t) = F(Z,,0,...,0,t).

Then, choosing Z, =Z, =--- = Z, = 0in (2.5b) we get
0=AJdTo(Zyt,A) + Fo(Zy,1).

So Ty(Zyt,A) has a simple pole at 4 = 0 and is analytic on
C\{0}.TakingZ, = Z, = - - - = Z, = 0in (2.5b), differen-
tiating with respect to Z,, and equaling Z, to zero we obtain

AT (ZytA) )

9z,
T 3\ 9< e e9V)y
=4J T2y 0,01 4) ) + [ Dy(Zyt,A4) ]
9Z,
F(Z,,0,...,0,t
+ Pyl Ty(ZotA) ] + P Ze000)
9z,
Evaluating in E, it follows that d; — d, has a simple pole at
A =0, where
Dy(ZptA) = Y di(ZtA)E,
Jj=1
with
Y d;=0.
J=1
Since

d=L % (d,—-d)
L =

we get that D,(Z,2,A) has a simple pole at A =0. For
r=10,1 7(4)<0. Therefore, 4 depends mostly on Z, and is
equal to A,. 0

Remark 2: In Ref. 1 we proved that if the entries of Uare
functions linearly independent then the residuesof Dand T
are zero and the functions D, T, and F are independent of
Z, = U. So the nonlinear evolution equations related to the
case P == U_ are identical to the nonlinear evolution equa-
tions related to P= U.

W.P=Z,

We start with Lemma 3.1 that is a generalization of
Lemma 3.4 of Ref. 1.
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Lemma 3.1: Let Z = (z;,)er,(C) with the entries z;,
being linearly independent functions. Let DeD, (C),
Ter, (C), L (Z)el{r,(C); D, (C)) be differentiable func-
tions with respect to Z and let L,(Z)el{r, (C), 7, (C)) bea
twice differentiable function with respect to Z such that

““’;‘ZZ’( ) =P, [ T(Z)) + Lo(Z)(-) (txD(Z) =0),
(3.1a)
"Z‘ZZ’( ) = [ D(Z)] + Pol -, T(Z))] + Lo(Z) ().
(3.1b)
Then if
D=3 dE, and T= ; £y
i=1 sk=1
we get
1[/3Ly(Z) dLy(Z) )
t, =—{ (2204 (g y E.).E,
* 2{( 3z, B Iz (B ) B
~ Ly (Z)(Ey),Epy — Eﬂ)} (3.2a)
d; —dy = — % 1+ (Ly(Z)(E}).Ey), (3.2b)
ik
} n
—; z d —d), (3.2¢)
where (4,B) = tr(4B*).
Proof: The following relations hold:
ad,
L= “”tjk + <Ld(E)k))E”)’ (33&)
dzy;
ad,
=t + (L (E),E), (3.3b)
0z;; -
a,
a”‘ =d, —d; + (Lo(Ep),Ey), (3.3¢c)
Z 3k
a,
a;; = (Lo(Ey),Ey). (3.3d)

Let us verify (3.3a), the others follow similarly
ad; aD

2 (p, E;) = (—E;).
0z T % Zy; dzy o
With the help of (3.1a) we get
ad;

a == (Pd [Ekj’T] +Ld(EIg) E )
Zxj

Now, using {[4,B],C} = (B,[4 *,C]), it follows that
ad;
dz;

= ([Ek,:T} Eg) + (Ld(Ek,) Ey)

= (T,[Ej,E;)) + (L, (Ey),Ey)

= — (T,Ey) + (L;(Ey),.Ey)

= -1 + (L, (Ekj)’Ejj>'
Subtracting (3.3a) from (3.3b) we get
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ad,—d) -
o = %{_S_k_; — Ly (Ey) B — E,-,-)].

(3.4)

From (3.3c) we obtain
d, —d;) 3, 4
3z, 92,0z Oz

and changing the order of differentiation it follows that

(Lo(Ep).Ep),

a(d, —d;)
0z,
a
= (LO(Ekj )’E'jk )
Zik
a
- (Lo(Ejk ),Ejk>
ij
R E.
(B 2L g -
0z 9z
From (3.4) and (3.5) we get (3.2a) and (3.2b). O

Theorem 3.2: Let 7(F) = r and suppose that the entries
of Z,, _, are linearly independent functions, then

(a)ifr>mthendisC~onZ,,Ak=0,1,..,r—1,1eC.

(b)ifr<mthend=0=F.

Proof: Let us prove (b) first.

(1) Suppose that m = 0 then 4 and F are constant on
ZyZ,,... . Then from (2.1) we get

AdA + [ZpA )+ F=0.

Therefore [ Z,,4] = 0VZ,er, (C). By (i) of Lemma 2.3 we
getA=0s0F=0. B
(ii) suppose m > 0. Then (2.1) gives us

k—1 aA
Y~ (Z) =434+ [Z,A] +F.
j=0 j

Differentiating the equation with respect to Z,, we obtain

0A
azm_l( y=1[-41],
or ‘
aD
y=P,[,T],
az,,,_,() a[T]
oT
D=[.D Po[-,T],
32.,._1() [.D]1+P[-,T]

and by Lemma 3.1 we get D = T'= 0. So F = 0. Let us now
prove (a).

(iii) Assume 7> m, then we can prove by induction that
04 /9Z, is C~ on Z,,....Z, _,, A AeC for m<k<r—1:

A=A(Zy...Z, _,0,..0,t4)

1
+ f i A(Zy..nZ,, _SZ,..sSZ,_ | H,A) ds,
o ds
and we need to show that
A, (ZysZ,, _ | t,A) = A(Zy,....2Z,, _,,0,...,.0,t,A)
is C* on Z,,...,Z, _ A. Taking the derivative of (2.1) with
respect to Z,, and making Z,, = --- = Z, =0, we find
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aAm-—l
—2=1()
azm—l
3A(Zgy.Z,, _ 1,0,..,0,t,4)
=[Am_1]+43 2 azml )
OF(ZoysZp _ 1,0,-011)
+ 3 ()
AA(Zg,..,Z,, _ 1,0,...,0,t
_L (Z, 1 A) ).
9z

m

Taking the projections P, and P, we get from Lemma 3.1
that 4,, _, is C * on Z,,....Z,, _ A

(iv) Suppose r = m. Differentiating (2.1) with respect
to Z,, we obtain

94 JF
aZm_l( )= ,A]+azm( ).
Therefore, using Lemma 3.1 it follows that 4 is C= on
ZoyeesZ,y _ 1, A AeC. O

Since 4 is C* on Z,,,...,Z, _,, A A€C (r>m) then we
have

A= AU, trd,=0, j=0,,..
j=o
Substituting in (2.1) we get

LA, =34, , + [ZnA4,], j=12,.,
Ldy= [Z,,.40] +F,
or

LD, =P,[Z,.T,], j=01,.. (3.62)

LT, =3T,_, + [ZnD;] + Po[Zm:T}], j=1,25mm,
(3.6b)

LT, = [Z,,D] + B[ Z,,,T,] + F. (3.6¢c)
It follows from (3.6a) and (3.6b) that if j>r — m + 1 then
7(T;)<m — 1 and 7(D;)<m — 1. Therefore, differentiating
(3.6a) and (3.6b) with respect to Z,,, and again using
Lemma 3.1 we conclude that for j>r — m + 1, we have D,
=0=T,. Equations (3.6a) and (3.6b) also show that
T,_,, =0and D,_,, = const. Hence, using induction we
obtain that D; and T}, j =O0,...,r — m (m>1) are functions
independent of Z,,Z,,...,Z,, _,. Using (3.6c) then Fis also
independent of Z,,Z,,....Z,, _,. So

r—m

D(ZpZy 1t = 3 ADy(ZpresZ,y_10A),
k=0

r—m

-1
T(Z,,.,Z,_,tA) = AT(Z,,, 0 Z, _ | ,tA),
0

F=FZ,,..Z.1),

and the substitution ¥'= Z,, reduces this case to the pre-
vious one P= U.

A. P=Z,,, (g ;)

Let

J. A. Cavalcante and J. A. Silva 1619



and

J‘(o
ThenD=dCy), T=t*C, +t " C_and F=fC,.

We can show that D and T are analytic for 4 #0. Hence,

D=( $ A%JQ,

0)
ith a;, —a,=1.
a, with a, — a,

k= — o
T=( i /lkt,j)c++( i ikt,:)c_.
k= — oo k= — o
Since  [C,,C_]= —-2C, [C,Gl= —-2C_,

[C_,Col= —2C,,dC, =C_,andJC_ = C__ weget the
following equations:

Ld, = —2z,t, (3.7a)
Lty =t} —22,d, (3.7b)
Lt =¢t;_,, k#0, (3.7¢)
Ltg" =t =, +/ (3.7d)
with
- Ig
Lg—j;)zj+1 a_zl

(i) For k<Owehave (¢ ; Y<m — 1,7(d;, )<m — 1and
for k<0 7(¢; )<m — 1. Deriving (3.7a) and (3.7b) with
respect to z,, we find

ad, - —2r,
%1 k<0.
I _ g

az’n_l ks

1620 J. Math. Phys., Vol. 31, No. 7, July 1990

The solution of this system is given by

d, = Cy(2py...s2,, _;)COSh 22, |, (3.8a)

ty =Ci(2pyes2, _5)8inh 2z, _,, (3.8b)

where T obeys the normalization condition as |x| — o then
z;, —»0 and T-0. Taking z,, =0 in (3.7a) and (3.7b) and
using (3.8a) and (3.8b) we find

m—2 aCk
Z. —_—=0 39a
_,‘Zo ixt 8z,- ( )
and
tF_, =0 for k<0. (3.9b)

Equation (3.9a) shows that C, is constant. Substituting
(3.9b) in (3.7c) yields

ti_, =0 for k< —1,
s0

d, =0 for k< —2.
Therefore,

d_,=Ccosh2z, ,,

t-,=Csinh2z, ;.

(ii) Similarly, we show that the regular part of Dand T
are polynomials in 4, independent of z,,z,,...,2,, _,.
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The correlations between the hyperspherical harmonic transformations and the generalized
Talmi~Moshinsky transformations are studied for the three-body and four-body systems. An
optical approach for solving few-body problems through diagonalizing the Hamiltonian of a
system in an optimal subset of the basis functions of harmonic oscillators in hyperspherical
coordinates is proposed. The evaluations of the interaction matrix elements are achieved with
the aid of the transformation properties of hyperspherical harmonics.

I. INTRODUCTION

The method of hyperspherical harmonics or & harmon-
ics has been applied extensively in recent years to study
many new types of atomic, molecular, and nuclear few-body
problems.!? In the hyperspherical coordinates, the (¥ — 1)
radial variables for the internal degrees of freedom of an N-
body system can be reduced to only one hyperradius contin-
uous variable together with a set of hyperangular quantum
numbers. The eigenstates of the total kinetic energy operator
can be expressed by using hyperspherical harmonics where
the most significant character is the decoupling between the
hyperradius associated with the size of the system and the
hyperangles associated with the shape of the system. The
advantage of hyperspherical coordinates is that the hyperra-
dius is an invariant quantity under coordinate transforma-
tion and the rearrangement collision can conveniently be
treated with the aid of the transformation properties of hy-
perspherical harmonics. Progress has recently been made by
Lin and Liu.? They proposed a method of solving three-body
problems in hyperspherical coordinates in adiabatic approx-
imation. The adiabatic channel function is expanded in
terms of analytical functions expressed in different sets of
Jacobi coordinates to describe each disassociation limit nat-
urally. The evaluation of matrix elements between functions
in different Jacobi coordinates is achieved through the
known transformation properties of hyperspherical har-
monics in these coordinates. At the same time, the general-
ized Talmi-Moshinsky transformations have also been ex-
tensively used in the calculations of few-body problems. The
approach for obtaining the bound-state solutions of the sys-
tems with short-range interactions by using harmonic oscil-
lator product states as basis functions is well developed by
many authors.* It is a very convenient method, although it is
not a method with the best accuracy. The evaluations of
matrix elements can be carried out with the aid of the gener-
alized Talmi—Moshinsky transformations.

In this paper, we attempt to further study certain corre-
lations between the above-mentioned two kinds of basis
functions from the point of view of few-body problems. In
Sec. II, the basis functions of the harmonic oscillator in hy-
perspherical coordinates are presented. These basis func-
tions are related with the harmonic oscillator product states
in Jacobi coordinates through the orthogonal transforma-
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tions. The correlations between the hyperspherical harmon-
ic transformations and the generalized Talmi—-Moshinsky
transformations are found with the aid of the above-men-
tioned orthogonal transformations. An optional approach
for solving the few-body problems through diagonalizing the
Hamiltonian of the system in an optimal subset of basis func-
tions of the hyperspherical harmonic oscillators is proposed.
A brief conclusion is given in Sec. III.

. CORRELATIONS BETWEEN THE HYPERSPHERICAL
HARMONIC TRANSFORMATIONS AND THE
GENERALIZED TALMI-MOSHINSKY
TRANSFORMATIONS

Let us consider an N-body system. Let ¥; denote the
coordinates of particle / with mass m; in laboratory frame. A
possible set of Jacobi coordinates is denoted by p, with re-
duced mass ;. Let M = Z,m, be the total mass of the system
and # be the coordinates of the center of mass. There exist
two important identities for the different sets of Jacobi co-
ordinates for the N-body system:

N N-1
S mPB=3 wi+Md (1)
=1

’7"1 i 82] =L B 1 382
“m, 3%, 0%, Mam

If we further introduce a set of mass-weighted vectors,
Ej = (ﬂj/:u’)l/zﬁj’ (3)

where u is arbitrary, Eqs. (1) and (2) will lead up to the
following identities:

(2)

N1t o, N ,
zl 'u;a)p}a) — z l“}ﬁ)pj(ﬂ) , (4a)
Jj= Jj=1
Nil 1 V2 N—-1 1 )
Sla) = V_p, (4b)
= ﬂ}a) Pj jgl /_t;ﬁ) pf, )
and
N-1, = N-1_
z é—}a) — 2 é-l(B)’ (5a)
j=1 j=1
N-1 N—1
z Vg(m = Z ng(ﬁn (5b)
=1 7 i=1

where a and B denote two arbitrary sets of different Jacobi
coordinates. For a three-body system, there exists three sets
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of different Jacobi coordinates as shown in Fig. 1. For a four-
body system, there are 15 sets of different Jacobi coordi-
nates, shown in Fig. 2 as examples. Equations (4a) and (4b)
are the foundation of the generalized Talmi—Moshinsky
transformations and Eqgs. (5a) and (5b) are the foundation
of the hyperspherical harmonic transformations. In the fol-
lowing we will discuss, in turn the three-body and four-body
systems.

A. Three-body system

The kinetic energy operator for the three-body system in
the center-of-mass coordinate system is expressed as

T=—— Z (6a)

J“l.u'j
or
# 2
T=—— Y Vi (6b)
w e
By defining a hyperspherical radius £ and a hyperangle ¢,
E2=£1+£3, tang=§/6 N
Eq. (6b) is rewritten as
# (&2 5 9 A2(Q))
= —— i 8
P TS ®

where ) denotes the assembly of five angles, 3 = (¢,§‘,,§'2)
and A? is the grand angular momentum operator

1 d
AQ)= ————
(@ " sin? dcos’ ¢ d¢ (m ¢ cos’¢ ¢)
1E) | 13
sin¢  cos’g ®)

The normalized eigenfunctions Y| , of the operator A Q)
are well known:

Yig () = lell(¢)YI.I,LM(§-1’§2)’ (10)
satisfying the eigenequation

A Q)Y (Q) =Ag (Ax + D Y4 (D) (11)

Ag =2m+ 1+ 1, (12)

and [k] denotes an aggregate of quantum numbers
m,l,l,,L M, and

Q4/(4) = 8 sin” ¢ cos” ¢
xpm(lz+1/2.l.+1/2)(cos 2¢)’ (13)

where 6% is the normalization constant and P, *#
(cos 24) is the Jacobi polynomial. In Eq. (12), Y}, ;,, is the

LA A

FIG. 1. Three different sets of Jacobi coordinates for the three-body sys-
tems.
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>

FIG. 2. The different sets of Jacobi coordinates for the four-body systems.

coupled total orbital angular momentum function. The ei-
genfunctions Y| (1) form a complete and orthonormal set
satisfying

fdﬂ Y ()Y () =8ix11x 1 (14)

where the volume element dQ) = cos? ¢ sin® ¢ dg dé‘ 1 dfz.

The above equations, (6)—(14), can be written for each
of the three sets of Jacobi coordinates. From Eqgs. (5), (6b),
and (8), it is clear that the grand angular momentum opera-
tor is independent of the chosen Jacobi coordinates

AZ(Q%) = A (QF) = A% (). (15)
Therefore, it is possible to expand the eigenfunction of one

set in terms of the eigenfunctions of another set within the
given subset with 4. = A,:

Yix,(Q%) = [;]A {ﬁ’ltlha (naa')Y[K'](Qa’)~
Here, a' denotes either a 8 or ¥ set and 7, is related to the
mass ratio of the particles. The expansion coefficients

(16)

A (120) —fdn" Y (Q9) Y (0% (17)

are called the transformation brackets of the hyperspherical
harmonics (TB).
Now let us introduce a Hamiltonian:

__h2 9° .53 AYQ)
o= (2§+§a§ £

)+ oo
(18)
The eigenfunctions of H, are the wave functions of the har-

monic oscillator in the hyperspherical coordinates with the
formula

Uk =Ry, (E) Y (i 1(R)/E%? = |Nml ;LM ), (19)
where [I] denotes an aggregate of quantum numbers
N,m,l,1,,L,M. The corresponding eigenvalue is

EY = QN+ v+ Hfw. (20)
Here, v=Ax +3=2m+ 1, +1,+3 and N is the radial
quantum number of the harmonic oscillator. Also, R, sat-

isfies the following radial equation of the harmonic oscilla-
tor:

d? 2 20? vi(v+1)
{5 P RS T,

]RM =0,
(21)

The eigenfunctions ¥}; ; form a complete and orthonormal
set. The wave function of the three-body system can be ex-
panded in terms of the basis functions W}} , and an approxi-
mate solution can be obtained through diagonalizing the
Hamiltonian of the system in an optimal subset. This ap-
proach has been used to solve the three cluster structure of
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light hypernuclei and proved to be successful.” The evalua-
tion of matrix elements is carried out with the aid of the
transformation brackets of the hyperspherical harmonics. A
variational parameter #w is introduced.
An optional method can be obtained through rewriting
Eq. (18) as
2 # 1 <
Ho= 3 (=24 + 5 wd])
= 2 )
2 2
= 2 ( _7 v2
=t 2u;
The eigenfunctions of Eq. (22) are the two harmonic oscilla-
tor product states:

[J 1= (‘Pn.l. (51)‘!’"211 (§2))LM
= |”111”212;LM>’ (23)

with the eigenvalues E?; | = (2n, + [, + 2n, + I, + 3)#iw.
Here, [J] denotes an aggregate of quantum numbers
ny,ly,ny,0,L,.M. The functions W{7 , also form an orthonor-
mal and complete set. The wave function of the three-body
system can also be expanded in terms of the basis functions
W79, and an approximate solution can be obtained through
diagonalizing the Hamiltonian of the system in an optimal
basis set. This approach has also successfully been used in
the calculations of three-body problems with the short-range
interactions.® The evaluation of matrix elements is achieved
with the aid of the generalized Talmi-Moshinsky transfor-
mations.

The wave functions considered here include only the
spatial part. For the systems including the identical parti-
cles, the spatial wave functions have to be combined proper-
ly with the spin functions to obtain correct overall symme-
tries for the total wave functions. This combination depends
on whether the identical particles are Fermi particles or Bose
particles.

Both of above-mentioned methods are intrinsically
equivalent to each other. The W , and W3 | are the solutions
of the same Hamiltonian with the same boundary condi-
tions. Both of them are correlated to each other through an
orthogonal transformation. Then W[5 | can be expanded in
terms of WS, or converse:

1
;g B 22)

INmLILMY = 5 CNe (L) [mdyngl LM ),

ny,n

ie.,
RNv(g)Y[K](Q) _
§5/2 nun(ny 4+ n, =N+ m)

XAPut, E)Pus, E)irge  (24)

Here, C /7 (1,1,) is the expansion coefficient whose explicit
formula i 1s glven in the Appendix and there exists a symme-

try:

Com (L)

C¥m(hh) = (— 1)"CYm (L),

nn,
These formulas can be written for each of the three sets
of Jacobi coordinates. Since the hyperradius £ and so Ry,

(£) are invariant under the coordinate transformation, and
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by using the orthonormal property of R, (£)/& 52, we ob-
tain

(YERINYED= ¥ >

ny,n, ni,n;
(n + ny = m)

Coml113)8

Ahk
(n} + np = m')
X oy (il ing155L |nyynylyl ) o
XCg,nm,(lllz)- (25)
The left-hand side of Eq. (25) is just the transformation
bracket of the hyperspherical harmonics, Eq. (17), and

(‘5,) n”;néli;l‘ |nllln212;L )(a)

= <(¢";[; (ﬁga’))¢nili (ﬁéa’)))LMl

X (¢n.l, (ﬁga) )¢nzl, (.Bga) ))LM)
is just the generalized Talmi-Moshinsky transformation co-

efficient (GTM). Equations (24) and (25) are just the rela-
tions we want to find.

B. Four-body system

A procedure similar to the one done in Sec. II A can be
shown for the four-body system. There exist 15 different sets
of Jacobi coordinates for a four-body system (cf. Ref. 7).
The kinetic-energy operator of the four-body system in an
arbitrary set of Jacobi coordinates is given by

T= 2 2 V2 (263)
121 Hj
or
= —— z (26b)
j=1
By defining a hyperradius and two hyperangles,
§1=E£cos dy,
&, =& sin ¢, cos @, 27)
§3=¢&'sin ¢, sin ¢,
the kinetic-energy operator is rewritten as
2 2
T=_ﬁ2 (82 8 d A(;o)), (28)
P

where ® denotes the assembly of eight angles,
© = ($1,PnE1enés) and A%(w) is well known as the grand
angular momentum operator:

A (w)= — 822 — (5cot ¢, —2tan ¢,) 9
d’¢, o,
’I\%(El) 1 ( a2
- — 2(cot
+m%+wm a7, (et
12(&) WQ)
_t @9
an ¢2) a¢2 3, ot s, Tsntg)
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where,( 5, ) is the orbital angular momentum operator asso-
ciated with Z,. The eigenfunctions of A?(e) are

Yix (@) = Q1 (60,8,) 0, (D1, (B3, B ) ime
(30)

fulfilling the eigenequation

Here, [K] denotes an aggregate of eight quantum numbers
ml,m2,11,12,13,123,L,M and A[K | == 2m1 + ZM2 + ll

+hL+1,

QLkh (,,6,) =sin~*? ¢, Qf,,’f“ﬂl'(tﬁ] Q5k(8,),
(32)

and Q% is defined by Eq. (13), Ax =2m, + 1, + I;. The
function Y5 ,(w) form a complete and orthonormal set

fdw Y (@)Y (@) =6k s (33)

where the volume element
dw = sin® ¢, cos? ¢, sin® @, cos’ @, do, dé, d&, dE, dE..

Equations (26)—(33) can be written for each of the 15 sets of
Jacobi coordinates. From Egs. (5) and (28), it is quite ob-
vious that the hyperradius £, T operator and so A’(w) are
invariant under the coordinate transformations. Then, being
similar to the three-body case, the eigenfunction in one set of
Jacobi coordinates can be expanded in terms of the eigen-
functions in another set within the given subset with A4 4.,
= Ak pie,

Yig (0%) = Y AK57P(,6) Y 1 (0F), 34)
[K’)]

and the transformation bracket for the four-body system
(TB) is

4 {5‘]““3(77(,5) = f du” Y(K ](wﬁ) Y[K ](wa)

=(Y[K’](wB)|Y[K](wa)>- (35)

Here, a and S denote two arbitrary sets of 15 different Jacobi
coordinates.
We further introduce a four-body Hamiltonian now

__#(az 8 3 Az(w))

0= —_—

% £k £

+ W *E2.
(36)

The eigensolutions of Eq. (36) can be written in the follow-
ing formula:

W =Ry ()Y« (@)/E*

= INm1m2111213123§LM>§ (37)
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R, satisfies the following equation:

d? 2 20? 1
d2§+ ﬁlztE[I] ’um gz V(V+ )]RNV“O

(38)

where v=Ax;+3=2m,+2m,+ 1, + 1, + 5+ 3. The
solutions of Eq. (38) are the typical radial wave functions of
the harmonic oscillator with the quantum numbers N,v, and
the corresponding eigenvalues are

E% = (2N + v + 3/2)w. (39)

Here, [I] denotes an aggregate of nine quantum numbers
(Nym,my,l,0,05,0,5,L,M). The eigenfunctions W75, form a
complete and orthonormal set. The wave functions of the
four-body system can be expanded in terms of the basis func-
tions W[} | and an approximate solution of the system can be
obtained through diagonalizing the Hamiltonian of the sys-
tem in an optimal basis set. The evaluation of the interac-
tions matrix elements can be carried out with the aid of the
transformation brackets of the hyperspherical harmonics of
the four-body system. A variational parameter #iw is intro-
duced.
The other optional method is to rewrite Eq. (30) as

3 ﬁz 3 1 2p2
H,= ( —V —uw -), 40a
0 jgl 2,[1, 2)“ 5} ( )
or
3 7 1
H,= -V 4 — wz‘z) (40b)
o ,Z'l( LR Hwp;

The eigenfunctions of Eq. (40) are the product states of
three harmonic oscillators

[.l] = (@, (51)(‘]’"1 (52)‘}7"‘1, (53))1 Yim

= |”111’12[2n3l3123;LM>s (41)

with the eigenvalue
EQ =@+ n+m) + L+ L+ L+ 9/2).

Here, [J] denotes the aggregate of nine quantum numbers
(ny,ly,n0,00n50,03,L,M). The eigenfunctions W5, also
form a complete and orthonormal set. The wave function of
the four-body system can be expanded in terms of the basis
functions W[5 | and an approximate solution can be obtained
through diagonalizing the Hamiltonian of the system in the
optimal basis set. This approach has also been successfully
used in the calculations of the four-body problems with the
short-range interactions. The evaluation of matrix elements
is achieved with the aid of the generalized Talmi—Moshinsky
transformation of four body.

The wave functions ¥}, and ¥; | are the solutions of
the same Hamiltonian with the same boundary conditions.
Both of them are correlated to each other through an orthog-
onal transformation. Then we can expand W5 | in terms of
‘l’[ 7 Or converse

|Nm myl\L1s1,5LM )

=2

[GTLE R

CnN.':-';r: (LLL) |nd\nylons LM ),

ie.,
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Ry, ()Y (x ](“’)/54

Ry,R5, 05
(ny+ny+ ny =N+ m, +m,)

XA(@Pn,1, (El)(‘?’n,@ (Ez)‘l’n_,l, (33))12, Yim:

All the above formulas can be written for each of the 15 sets
of Jacobi coordinates. Since the hyperradius £ and so R,
are invariant under the coordinate transformation and by
using the orthonormal property of R, /£ *, we have

(Y[x'l(a’ﬂ)lY[m(“’a»
= 2 2

LR RE ny,n3,n}y
(ny+n + ny=m, + m;)

CNmma (1 L1)

nonyn,

(42)

(n] + nj+ ny=mi| + m3)

c°m'"(11213)c°"'""2(1 131%)

X g {nilinylonyl sl LM
X |ndnylons bl LM ) 4y (43)
The left-hand side of Eq. (43) is just the transformation

brackets of hyperspherical harmonics shown in Eq. (35)
and the symbol in the right-hand side

133;LM |nyLinylns 1, LM ) (o)
= <(¢n1 (§ ﬂ))(¢n ,:(§ B))¢", (g B)))I )LM
X| (@, (5 Ia))(q’nzlz (§2a))¢7n,1, (5 3a)))lz, Yiam)

is the generalized Talmi-Moshinsky transformation coeffi-
cient (GTM) from the « set to the B set. The closed formula
of the GTM coeflicients was rederived by Bao and a compu-
tation program was also given.” There the GTM coefficients
were represented by the symbol TM4 (n,,/,,n,,0,,n5,0,,n1 .1 1,
n; ’l 5 9”3 9l 3 1123’1 33 rL’Xl’XZ’X:&’XmK)v and X 15X, X35X4
denote the masses of the four particles, respectively. Index K
is used to classify the transformations from a certain set to
another set (cf. Ref. 7). The coefficients C¥™™(],,1,) are

nynyny

given in the Appendix. There exist a symmetry relation
CNmm(] LI) = (— 1)™CYmm (] L1,).

nyahy nynzn;

@ (nilinslingl

Equations (42) and (43) are just the relations we attempt to
find.

1. CONCLUSION

The correlations between the transformation brackets
of hyperspherical harmonics and the generalized Talmi-
Moshinsky transformation coefficients are obtained. This is
significant for understanding the intrinsic connection
between two kinds of basis functions mentioned above. It
may be utilized for calculating one kind of both TB and
GTM coefficients in terms of another kind and checking the
formula of the transformation coefficients used in the calcu-
lations. An optional approach of solving few-body problems
is proposed. In this method, the wave function of the system
is expanded in terms of the basis functions of the harmonic
oscillator in hyperspherical coordinates and the approxi-
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mate solutions are achieved through diagonalizing the Ham-
iltonian of the system in an optimal basis set. The advantage
of this approach is that the hyperradius £ is an invariant
quantity under the coordinate transformation. The evalua-
tion of matrix elements can be carried out in terms of the
transformation brackets of hyperspherical harmonics. The
number of the transformation bracket needed in the calcula-
tions is less than that of the generalized Talmi-Moshinsky
coefficients needed in calculating matrix elements since the
quantum numbers taking part in the transformation in hy-
perspherical coordinates are less one than that in the har-
monic oscillator product states. The similar procedure can
be generalized to the cases of the number of particles N3>5.
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APPENDIX

In this appendix we give the explicit expressions of C 7.
(L1,) and C (1 L1,) for three-body and four-body sys-
tems, respectively. In order to be concise, we rewrite the
formulas mentioned in Sec. II as follows:

e p’/2
R, (p) = z B(ng,)pmp—xp—(;/z——)-_

Here,
Bonlpy = |[—— 2| _ 1),,<n+1+ 1/2)i

F(n+l+3/2) n_P p"
QT.T2(¢) z D(mTszk)SIn"+2('” k)¢COST2+2k¢

k=0
Here,
D(mr,rk) =077(—1)"~*
X(m +7+ 1/2)(m +7,+ 1/2)
k m — k ?

g™ = (2(2n +1+ 7+ 2)mT(m+ 7 +7,+ 2))1/2
" T(m+7,+3/2)T(m+ 7, + 3/2)
and define

E(x) =f exp( — p*)p* dp
0

()

—1)n
—(J—C————!L Jm, if x =even,

2x/2 +1

if x = odd,

7/2
SC(IJ) = f d¢ sin’ ¢ cos’ ¢
(V]

—e J-nJ-nn

I+Nnt
e {ﬂ/ 2, if Iand J are the even integers,
1 otherwise.

Then we have
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n, n, N m
Clm (i) = 3 3 T B B(nilp)) Binlp) CE M WA b4 214 P ¥ PO S iy g 1y
k

P P2 P

2

XScQ2(+m—k+p,+1),2(L, +k4+p, + Dn s mm, 4 5y

where,

ny 3 ny N
Cormmihhl) =Y B(ndip,) Y B(nyhypy) Y B(nshps) Y B(Nwp)E(v+5+ 1+ L+ 1, +2
P Pa

P P2

m, 3 m,
X (B + P2+ 02 +2) S D (ml(ak + 7)1,1(,) S D(mal k) SCUL, + 5+ 1, +
k, k»

+2(my+p,+p3— k]),2(11 + kl +p+ 1))SC(2(13 +m; — kz +ps+ 1),2(12 + kz +p,+ D)

X5N+m.+m2,n.+n2+nj9

where A, =2my,+ L+ Landv=2(m,+m,) + L, + L+ L.
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Lie group symmetries and invariants of the generalized Hénon-Heiles equations are found.
The coupled second-order equations are invariant under translations in time, in general, and
the stretching group (dilation) if the linear terms in the “force” are absent. The equivalent set
of four coupled first-order equations is found to be invariant under a one-parameter group for
three cases and the group generators are given. Three different approaches are reported: the
“classical method” for determining Lie group symmetries, a modified method for finding Lie
group symmetries with vector fields and the direct method for calculating the invariants. For
the Hénon-Heiles equations the direct method is the most efficient.

I. INTRODUCTION

The integrability of the two-dimensional Hénon-Heiles
equations, which have been regarded as a prototype of cou-
pled nonlinear first-order differential equations, has been
analyzed by several approaches.!™!! The equations were ori-
ginally found for gravitating stars in a cylindrical galaxy.'
Presented here is an attempt to determine the Lie point
group symmetries of these equations and to relate the sym-
metries to the determination of a second invariant. The
Hénon-Heiles equations can be viewed as the equations of
motion of a dynamical system whose Hamiltonian H is the
energy E, where E is the first invariant. We call a system of
equations integrable if the corresponding dynamical system
in a 2n-dimensional phase space has n constants of motion or
invariants in involution (independent) since the Liouville
theorem'' states that the other n invariants can be found
once n invariants are known. For our system, the phase
space is four dimensional and we need find only two indepen-
dent invariants.

The generalized Hénon—Heiles equations are

X+ Ax +2Dxy =0, n
y+ By + Dx* — Cy* =0, (2)

where A, B, C, and D are constants and the overdots denote
differentiation with respect to time ¢. These equations are
autonomous since there is no explicit dependence on time ¢ in
the equations. Multiplication of Eq. (1) by x and Eq. (2) by
J and integration with respect to ¢ gives the first invariant,
the energy E,

cy?

E=X, 7 Ax LSy S

2 2 2

where f= Ax*/2 4+ By*/2 + Dx*y — Cy’/3 is used later on.
An additional invariant quadratic in the velocities has been
found previously for two special cases. The first for 4 = B,
C= — Dis (Ref. 2)

(3

G, = xy + Axy + Dx*/3 + Dxy?, 4)
where we do not rescale the coefficients here as is frequently
done.?® The second invariant for C= — 6D is (Ref. 4)
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. (44 — B)x* Dx*
xy) + N + 2
A(44 — B)X*

4D '

Finding the first invariant by a canonical transformation
was fairly straightforward, but finding the second invariant
required ingenuity. A more general procedure for finding
the invariants is the Painlevé method**"® that searches for
solutions of the differential equations for which the only mo-
vable singularities are simple poles. This method also indi-
cated aninvariantfor C = — 16Dand B /A = 16. Theactual
invariant was found by a variation of the direct method® and
is

G, = x(x — + Dxy?

+ Ax’y + (5)

it [ Ax? o, DxX’xp A%t
G, =—+ ( Dx? )x2 -
3= > + Dx’y 3 + 2
_ADx'y D°* D% 6)
3 18 3

The direct method begins with an assumed form of the veloc-
ity dependence of the invariant, sets the time derivative of
the invariant to zero and then equates the coefficients of each
distinct functional form of x and y to zero. These equations,
which are the counterpart of the determining equations in
the classic Lie point group method, are then solved for the
coefficients which depend on the spatial variables.

Il. LIE GROUP OF COUPLED HENON-HEILES
EQUATIONS BY THE CLASSICAL METHOD

First the invariance of the coupled second-order
Hénon—Heiles equations is checked by the *“classical meth-
od” as described in a number of references.'>** We exclude
conformal invariance here but it should give the same result.
The twice-extended group generator needed here is

= §(x’y’t) - + ”x(x’y)t) + ﬂy(x,y,t)

d d
E"'ﬂ,ﬁy a_j}’ )

where formulas for 7,7, and 7,}, are available on page 159 of

+ M
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Ref. 12. Then, the differential operator acting on Egs. (1)
and (2) together with the requirement that Egs. (1) and (2)
hold simultaneously is the invariance condition. This condi-
tion is an identity, consequently, the coefficients of the var-
ious combinations of x and y are set equal to zero. The result-
ing linear partial differential equations for the coordinate
functions &, 7%, and 7 are the determining equations. For
the general case, the group generator was only U, = 3/t
and the equations invariant under time ¢ had a single invar-
iant, the energy E. With the linear terms absent,4 = B =0,
the equations are invariant under the stretching group and
the group generator U,

Uzztg——Zx—g—-—Zy—a—, U,=é—. (8)
ot ox dy ot

The invariance under the stretching group does not lead to a
second invariant by Noether’s theorem.!*> The theorem of-
fers a prescription for the calculation of an invariant for a
dynamical system invariant under a Lie point group but re-
strictions occur that are not satisfied here. The invariants
found from Noether’s theorem for Lie point symmetries may
not include all the invariants for the differential equations.
The question then is how to find any invariants from the
stretching group. The classical Lie group method calculates
the generalized similarity variables from the characteristic
equations found from the first extension of U,. These are
xt?, yt2 xt3, and yt*. The invariants with these variables, in
general, will have dependence on time but the known invar-
iants, E, G,, G,, and G; do not depend on time. These four
similarity variables can be combined to form an independent
set of three variables, x/y, x/x*?, y/y*’?, which do not de-
pend on time but the known invariants cannot be construct-
ed from these variables alone. Hence, the Vlasov equation
for the invariant in these three similarity variables cannot be
expected to be solved for the known invariants. The Vlasov
equation in the four similarity variables or the reduced set of
similarity variables may have other invariants but integra-
tion of the characteristic equations of the relevant Vlasov
equations has not been successful so far. The characteristic
equations found from the first extension of U, may be aug-
mented by an auxiliary variable, here ¢, such that the charac-
teristic equations may be combined with appropriate func-
tions of the similarity variables to give the invariants £ and
G, , for example (Leach, private communication ). This non-
classical method is a generalization of the one discussed by
Ince.® However, finding the correct combination of equa-
tions in the similarity variables is similar to finding the invar-
iants by taking combinations of the original set of Egs. (1)
and (2). Another tack is tried here.

The Hénon-Heiles equations are rewritten as a set of
four first-order nonlinear, ordinary differential equations.
The Lie point group symmetries of this set includes the high-
er symmetries;!® therefore, we may find all the symmetries
for this set whereas the contact and higher symmetries are
not found for Eqs. (1) and (2) by finding the Lie point
symmetries. In addition, we can and shall write the group
generator in a form in which the coordinate function multi-
plying the ¢ derivative is zero but the other coordinate func-
tions depend on time ¢ (Ref. 15):
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xX—u=0, (9
y—v=0, (10)
U+ Ax+2Dxy=0, f. =Ax+ 2Dxy, (11)

b+By+Dx*—CP=0, f,=By+Dx*—CA  (12)

The group generator is found by the classical method for the
invariance under Lie group transformations of Eqgs. (9)-
(12). However, the calculations are long and entail many
interconnected determining equations. As all the known in-
variants are time independent, we assume that the second
invariants are independent of #. Then the group generator is
simplified by dropping the dependence on ¢ in the coordinate
functions. Consequently, the invariants found from the
characteristic equations of this form of the group generator
areindependent of ¢in the classical method. We do not inves-
tigate the possibility that a more general group generator
could retain ¢t-dependent coordinate functions but still pro-
duce the invariant E and a second invariant. A once-ex-
tended group generator in the four variables x,y,u,v acts on
Egs. (9)-(12). The resulting equations, which are given be-
low, Egs. (16)—(19), cannot be solved without an additional
assumption: The coordinate functions for x and y are as-
sumed to be quadratic functions of the velocities. The group
generators are calculated and correspond to the invariants in
Eqgs. (4) and (5). The calculation contains many simple re-
dundant relations. The possibility of determining the invar-
iant from the group generator seems dim because the charac-
teristic equations are so complicated; more so than for the
three invariants of a charged particle in a helical magnetic
field. Since the group generator is the same as that in Sec. ITI,
we postpone its discussion until then.

IIf. LIE GROUP OF HENON-HEILES EQUATIONS:
VECTOR FIELDS METHOD

The invariance of the Hénon-Heiles equations, which
can be viewed as dynamical equations, can be analyzed by
considering the commutator of differential operators. One
operator is called the Vlasov operator here and the other is
the group generator. The invariance condition is the vanish-
ing of the commutator of these two operators or in other

terminology the Lie bracket of two vector fields'*'® is zero.
The Vlasov operator is ¥ (Ref. 19)
V=ui+vi+i¢._a_+i]_a_, (13)

ox dy du A

where for # and & we substituted Eqs. (11) and (12), respec-
tively. The group generator U is

d ad a ad
v=U,—+U,—+U,—+ U, —,

dx Y dy + du + v
where the coordinate functions U, , U,, etc., are functions of

x,y,u,v. The invariance condition

(14)

[(U]=0 (15)

can be rewritten as
yvu,=U,, (16)
Vu,=0,, (17)
VU, = — AU, —2DyU, —2DxU,, (18)
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VU, = — BU, — 2DxU, + 2CyU,. (19)

These equations are identical to the invariance relations
found from the classical method if the coordinate functions
are renamed U rather than 7. The coordinate functions U,
and U, are found from Eqs. (18) and (19) by eliminating
U, and U,.

The solution of the Hénon-Heiles equations is equiva-
lent to solving the corresponding Vlasov equation that con-
sists of the Vlasov operator acting on a function of the invar-
iant(s). Then, we surely have

VE={EH}=0, (20)

VG ={G,H} =0, (21)
‘where E is the energy, the first invariant, H is the Hamilto-
nian, and G is the second invariant when it exists. The Pois-
son bracket is indicated by { , }. The invariance of the
Hénon-Heiles equations under an infinitesimal Lie group is
reflected in the invariance of the invariants under the Lie
group generator:

UE=0, (22)
UG =0. (23)

From the Lie bracket (15) and the above relations, we see
that the two vector fields are on an equal footing; that leads
to

UG={G,%}=0 (24)

where & is the equivalent of the Hamiltonian H for the
group generator. Then, by analogy with the relations for ca-
nonica] variables in Hamiltonian dynamics, we find

aG
U, =—, 25
* du (25)
aG
U =—, 26
= (26)
aG
U, = ——, 27
u o 27
U,= —?E, (28)
dy

where G = & is used here just as H = E for this dynamical
system which conserves energy. The four partial differential
equations are easily integrated although Noether’s theorem
for higher symmetries could presumably be used.

The relations between the coordinate functions of the
group generator and the second invariant simplify the deter-
mination of the second invariant once the group generator is
known. On the other hand, one can pick the velocity depen-
dence of the second invariant G; that choice restricts the
velocity dependence of the group generator coordinate func-
tions more than the initial assumption made in the earlier
sections. In the vector fields method, the velocity depen-
dence of the second invariant is first chosen to be quadratic
(as well as linear) in the velocities. Then, from Egs. (25)
and (26), we see that U, and U, are linear in the velocities
whereas the U, and U, may be quadratic in the velocities.
The solution of the coordinate functions proceeds by first
applying the integrability conditions on Egs. (25)—-(29) that
are of the type
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U, au,

_ 9%

ax du  Oxdu
This gives rise to a number of relations among the coeffi-
cients of each combination of the velocities. Once the coordi-
nate functions are simplified, they are substituted into Eqgs.
(16) and (17) and the determining equations for these coef-
ficients are found. The set of determining equations is redun-
dant. The group generator is for a five-parameter group until
the condition imposed by Egs. (18) and (19) reduces the
group to a two-parameter group. From the two-parameter
group we can find two group generators. One group gener-
ator is the Vlasov operator itself which we exclude; the other
is the group generator U. The group generators for the two
cases are:

(29)

Ul=vi+ui9-—(Ay+Dx2+Dyz)ai
u

ox dy
— (4x + 2Dxy) i, (30)
dv
where A = B,C= — D, and
(4A—B)u) ad a
Uy =(ox—2up 4 124 =2)u) 0 | 9
2 ("x YT T
_(uu+zAxy+2ny2+Dx3+W_—B):4;£)i
2D du
+ (12 — Ax* — 2Dx%)
ad
X=—, 31
% (31

where C = — 6D. One can verify that U, G, and U,G, =0
by substituting invariants from Eqs. (4) and (5) and the
group generators in the invariance relation (23).

The above approach to calculating the group generator
is much more structured and consequently less prone to er-
ror than the classical method employed in Sec. II; however,
the actual calculations are not much shorter and there are
still redundant equations. To reduce the redundancy of the
determining equations and the number of extra coefficients,
we next try the direct method.

IV. DIRECT METHOD FOR DETERMINATION OF THE
SECOND INVARIANT

By the direct method we calculate the second invariants
quadratic in the velocities and also report attempted calcula-
tions of restricted forms of the second invariant quartic and
sextic in the velocities. Once the second invariant is known,
we find the group generator from Eqs. (25)-(29).

In the direct method the dependence of the invariant on

_ velocities must be guessed. We assume a polynomial depen-

dence on velocities, a natural first guess as the potential is a
polynomial. Of course, we also know three invariants of this
form have been discovered. Next, we use a property of poly-
nomial invariants or constants of the motion reported by
Thompson.® He showed that the polynomial invariants are
either of even or odd degree in the velocities (momenta in his
work). As a result, for invariants quadratic in the velocities
we exclude terms linear in the velocities. If we had done that
in Sec. III, the constraints imposed by Egs. (25)-(29)
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would have left the group generator unaltered and the calcu-
lation would have been simplified. The group generator is
assumed to be

G =g(xp)u* — h(x,y)uv + i(xy)v* +j(x,p). (32)
The direct method requires that
dG
—=0, 33
ar (33)

where the coefficients of each combination of the velocities
are set equal to zero separately. For our case that results in
six partial differential equations, four of which, Egs. (34)—
(37), are trivially solved. The remaining two equations are
solved by substitution of g, 4, and i

9y nf,—2gf, =0, (38)
ax

i .

5—;+hfx — 2if, =0. (39)

The invariants found are the same as those found in Sec. II,
G, in Eq. (4) and G, in Eq. (5). The calculations are much
shorter than those done in Sec. II or IIl. The calculations in
Sec. I1I could be shortened with the restriction of the second
invariants to, say, even functions of velocities.

The last calculations are of possible invariants quartic
and sextic in the velocities. The invariants are assumed to be
of a restricted form and a more general form cannot be ruled
out. The form is

98 _ (34) G 3 =u*/4+ a, v’ + g(xp)u’ — h(x,p)uv
dx +i(xp)0 +j(xp), (40)
g_g - g_h =0, (35)  where a, is a constant and
évh );l, G, = u/6 + d(x,y)u* — e(x,p)u’v + g(x,p)u?
y  ex (36) — h(xp)up + j(x.p). (41)
gi _ 0 (37) Here, G is found to be the result in Eq. (6). From Egs.
dy - (25)-(29) and (40) we find the group generator is
J
3 3 3
U, = (u3 + Ax*u + 2Dx*yu — M) 9 _Dxugd + ( — Axu? — 2Dxyu* + Dx*uv — A** + 44Dxy
3 ox 3
4D’ D*° ) a ( ADx* 2Dx% ) d
i — Dx*u> =, (42)
Ty e AT 3 &

No invariant was found for G, in Eq. (41).

V. DISCUSSION

The integrability and Lie point symmetries of the gener-
alized Hénon-Heiles equations have been investigated by
three approaches: the classical Lie group point transforma-
tion method, the vector fields method, and the direct meth-
od. The group generators have been calculated by all three
methods for two different second invariants which are qua-
dratic in velocity. For these equations the classical method is
the most complicated and is long. A more structured method
has been presented using vector fields but the shortest meth-
od has been shown to be the direct method. The Lie group
generators are given for three separate values of the con-
stants: (1) A=B,C= — D, (2)C= — 6D, (3) B=164,
C = — 16D. Although the three invariants are not new, the
group generators are new and the methods in this form have
not been applied to the Hénon-Heiles equations before.®

The approaches discussed here are suggested as alterna-
tives to the Painlevé procedure for determining when a set of
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- nonlinear, autonomous ordinary differential equations is in-

tegrable. The Painlevé procedure does not necessarily find
all the integrable cases; in fact, a weaker criterion has been
used in certain cases.® The Lie group method as presented
here also does not necessarily find all integrable cases either
because the velocity dependence of the invariant or of the
group coordinate functions must be postulated. The possibil-
ity is left open that there are additional special cases for
which invariants may exist.
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The notion of a conserved density is generalized to those densities whose integrals evolve
exponentially. In the formal differential algebra used to find them, only a slight modification of
the conserved density case is needed. Various examples for quasilinear evolution equations are
given and an application to finding higher-order conserved densities by taking the Poisson

bracket of exponentially evolving densities is indicated.

1. INTRODUCTION

Consider an evolutionary partial differential equation
(pde) for a dependent variable # and independent variables ¢
and x. Both 4 and x may be vectors but ¢ is time and the
equation takes the form

u =K,

where K is a function of  and its x derivatives but not of ¢ or
any ¢ derivatives. A conserved density 7'is a function of ¢, x,
u, and derivatives of # such that there is another similar
function X satisfying

D, T=D.X,
where D, and D, are total f and x derivatives, respectively. It

is assumed that boundary conditions for  are chosen so that
the integral of T over space is constant in time:

D, f T dx =fD,de=fD,de= 0.

See Olver’s book' for methods of finding conserved densi-
ties, and their properties, applications, and history. Conser-
vation laws, as they are also known, are one of the major
themes of mathematical physics and a thorough study of
them is carried out in that book.
In this paper, this notion is generalized to the following:
D,T=aT+ DX

where a is a number, real or complex. We will call T an
exponentially evolving density (EED) because the integral
of T evolves exponentially with exponent a as the following
shows:

D, f Tdx = JD,de = f (aT+ D X)dx = af Tdx.
That is, if we have
I(1) =Jde at time ¢,

then we have
I(t) =I(0)e*.

When a is a negative real number, then I(¢) tends to zero,
and if a is pure imaginary, then |I(¢)|* is conserved. Both
kinds of quantities are useful.

II. RICH POISSON STRUCTURES

If the evolution system is a Hamiltonian system, then it
has a Poisson bracket and the total # derivative of a density 7,
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which does not depend on ¢ explicitly, is given in terms of the
Hamiltonian density H of the system and the bracket by

D,T={TH}.

Again, see Olver’s book for a thorough explanation of Ham-
iltonian pdes and their brackets. For an EED, we thus have

{T,H} =aT.

Suppose Sis another EED with exponent b. Then the Jacobi
identity says

{r1.s},H} + {{H,1},5} + {{S,H}, T} =0,
which reduces to

TS} .H} = (a + H){T .5},

which means that {75} is a new EED with exponent a + b.
Hence, these densities form a closed subalgebra of the Pois-
son algebra of all densities. Note that if b = — g, then the
new density is actually conserved so that new conserved den-
sities can be produced in this manner. This is somewhat simi-
lar in spirit to Rosencrans’ method of producing a conserved
density out of two non-Hamiltonian symmetries.? Once a
system has both a Hamiltonian structure and EEDs, one can
expect a very rich Poisson algebra.

INl. A SIMPLE EXAMPLE

First, we study the equation u#, = f{u)u,. Let usstart by
seeking the most general EED of the form 7'(u,u, ). Hence,
we must expand

D, T(u,u,) =aTl(uu,) + D X(u,u,)

using the chain rule, and since the coefficient of #,, must be
zero, it follows that

ar X
f =

du, du,
Since f does not depend on u,, we have X = flu) T + g(u),
which is substituted into the rest of the expression. Finally,
we get

a+fu )T
aTr =g'ux+( Suy) ,
du, frul

which is easily integrated for g = 0 to get what will be the
prototype of all examples considered in this paper:
T=h(u)u, exp( —a/f'(w)u,),

where A is an arbitrary function of . Note that if @ = 0, then
T'is simply h(u)u, , which is a trivial conserved density since
it is already an x derivative.
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For f(u) = u and h identically one, the density is
T=u_exp( —a/u,)
and the equation #, = uu, has a Hamiltonian structure giv-
en by
u, = D E(u*/6),
where E is the Euler operator or variational derivative
d/3u — D, (3/du,) + --+ . The Poisson bracket is given by
{4,B} = (EA)D,(EB).
A long calculation shows that the bracket of two of the above
densities with exponents a and b, respectively, is
a*b((a —b)u, . >/2u ®)exp( — (a + b)/u,).

The important thing to note is that this new density is of
order 2 although it was constructed out of two first-order
densities, and so bracketing of EEDs can lead to higher-
order ones, for which a direct search becomes prohibitively
long and tedious algebraically as order increases. When
b= — a, we get a higher-order conserved density

uXX S/ux 8’
and it is in fact easy to check that
D,(u,>%/u®) =D, (uu,’>/u®).

IV. EXAMPLE OF A QUASILINEAR DIAGONAL SYSTEM
OF TWO EQUATIONS

Such a system is of the form

u, =fux’ U, = 8Uy,
where f and g are functions of ¥ and v. Its higher-order

symmetries and conserved densities were first considered by
Verosky.®> A quick calculation shows that the density

T=h(u)u, exp( — /% ux)
u

(which is exactly the same as the one in the last section with
[’ replaced by df /du) is exponentially evolving with expo-
nent g and arbitrary A if g can be expressed in terms of f as

§= (ﬁuv _f;zf;:)/f;u

Let us call this expression N( /). This calculation can be
generalized to a diagonal system of three equations

u, =fux’ U, = 8Uy,
where f, g, and k are functions of «, v, and w. The EED will
have exactly the same form as above when both of the follow-
ing hold:

gz(ﬁuu —f;lf;))/flﬂ)’ h= Wuw _f:lfw)/fuw'

The generalization to n variables is obvious.
Suppose thatboth g = N( f) and f= N(g) hold. There
is then a symmetry in  and v and we get the following EED:

L)

+ k(v)v, exp( - /-é"—g v,).
v

Expanding f= N(N(f)) and performing the derivatives

w, =hw,,

T =h(u)u, exp( —
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shows what sort of f are possible. They are the solutions of
the pde:

-/;ll) f;luUU =-f;lUU f;uu *

which is easy to solve. Its general solution is

S[=p(w)q(v) + r(u) + s(v),

where p, g, r, and s are arbitrary twice differentiable func-
tions of one variable. The corresponding g is

g= —r(u)s()/p(u)q(v) —p(u)r(u)/p'(u) + r(u)

—q()s(v)/q' (v) + s(v),

which has the same general form of a product plus a sum of
functions of # and v like f It is not at all obvious that
N(g) =f but, on functions having the form that f does,
N?= 1. Clearly, lots of examples can now be produced just
by choosing p, g, 7, and s, but finding a Hamiltonian struc-
ture for the resulting system is not easy. There is an exam-
ple* of a diagonal quasilinear system that has no Hamilto-
nian structure but such systems are thought to be a singular
case by a simple variable counting argument in the equations
that need to be solved. A good question is to find all choices
of p, g, r, and s that result in a Hamiltonian system. The
forms of f and g are sufficiently limited to make this reason-
able. In the next section, we give one example where there is
a Hamiltonian structure.

V. A SYSTEM WITH BOTH HAMILTONIAN STRUCTURE
AND EEDs

Consider a system describing two waves, one moving
left and the other right, both with speeds given by the square
of the total amplitude. This nonlinear wave equation looks
like

u, = (Ww+v)u, v,=— (u+v),.

Both of the relations g = N( f) and f= N(g) holdascanbe
easily verified. The Hamiltonian structure is found by a
change in variables

(=) o=z (-5-9)
u=—(—— , v=—| ———gq]).
2\t 2\

The system becomes
rn=q., ¢ =(— 1/3'J)x’
which has a Hamiltonian structure
a
(r) _(0 Dx) a1 ¢
¢/s \D, 0/{ 3 (@Jr?)’
dq

which transforms to one in the uv variables with a nonlinear
Hamiltonian operator A4:

a
(u) iy du } 2u® — 2uv — W)
V/: d 3 '

)
If the Jacobian of the change of variables gr to uv is expressed
in terms of # and v, then we get
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J_(u, “q)_((u+v)2 l)
T\, v, T \(u+v)? -1/

and the Hamiltonian operator is

( 0 Dx) T

A=J D. 0 J,

where T denotes transpose. This change of variables is the
one that Dubrovin and Novikov® proved exists when one
has a nonlinear Hamiltonian operator A. Ironically, we went
backwards here because it is easier to find a change of coordi-
nates where the structure has a linear Hamiltonian operator
rather than to look for the nonlinear Hamiltonian structure
directly.

The Poisson bracket of two densities .S and T'is

E,
S, T}=(E,S,E,S)A ,
511 =msE94(, )
where E, and E, are the Euler operators or variational de-
rivatives with respect to # and v and may be written as

9 _p 0 p 3 _p 0
du du, dv v,

for the first-order densities under consideration. We forego
an explicit calculation because of its length. If the analogy
with the example in Sec. III holds, a second-order EED will
be the bracket of two first-order ones. An extremely rich

E, =
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Poisson structure can be expected and, in theory, bracketing
the EEDs of opposite exponentials can be used to construct
higher-order conserved densities in a way alternate to Olver
and Nutku’s® use of recursion operators for separable Ham-
iltonian systems (of which this is an example since in the
coordinates which the Hamiltonian operator is linear the
Hamiltonian function satisfies H,,/H,, = 1/r* which is sep-
arable). An interesting question is: Which of the diagonal
systems with f= N(g), g = N( f) and which have Hamil-
tonian structures are separable Hamiltonian systems?
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This paper is about harmonic maps from closed Riemann surfaces into homogeneous spaces
such as flag manifolds and loop groups. It contains the construction of a family of new
examples of harmonic maps from 72 = S ' X S ! into F(n) or Q(U(n)) that are not holomorphic
with respect to any almost complex structure on F(n) or Q{U(n)), where F(n) is the quotient
of U(n) by any maximal torus and Q(u(n)) consists of /: S ' — U(n) smooth such that f(1) = I.

I. INTRODUCTION

In this paper we study harmonic maps that are equivar-
iant with respect to an S ! action from 72 = S' X S ' into the
full flag manifold F(n) = U(n)/7T, where T is any maximal
torus of U(n) and F(n) is equippped with a large class of
left-invariant metrics that includes the Kihler ones and the
Killing form metric. In Ref. 1 we studied only F(n)
equipped with the Killing form metric. We also discuss the
extension of these results to the Loop group Q(U(n)).

Often interesting examples of solutions to nonlinear
problems are found by examining an equivariant case. The
assumption of equivariance under a continuous group action
whose orbits have codimension one in the domain manifold
reduces a partial differential equation to an ordinary differ-
ential equation, and by using the theorem of existence and
uniqueness of solutions of ordinary differential equations,
we can produce lots of solutions of our problem.

We also know that the critical points of a functional on a
space of maps are difficult to treat in general. The energy
functionals whose critical points are the harmonic maps are
easier to analyze from the point of view of computations
than, for example, the Yang-Mills functional, but they share
some of their important properties like conformed invar-
iance in the domain manifold, bubbling-of phenomena, etc.
This paper was inspired somehow by the fact that we can
obtain, in a more or less standard way, Yang-Mills connec-
tions of S 2 X .S ? that are not instantons. See Ref. 2 for possible
connections with the subject of that paper.

In the case of S*, according to results of Atiyah® and
Donaldson,* we have a natural 1-1 correspondence between
instanton connections on S * and holomorphic S ? into Loop
groups. Recently, L. M. Sibner, R. J. Sibner, and K. Uhlen-
beck® announced the existence of SU(2) Yang-Mills con-
nections on S* that are not instantons.

Now if one wants to understand the problem of harmon-
ic maps into nonsymmetric spaces like the Loop group with
the (symplectic) Kahler structure, it is natural to start this
study with harmonic maps into full flag manifolds, since
such manifolds model the geometry of the Loop group in
finite dimensions. See Refs. 6 or 7 for more details.

In Sec. II we state some basic facts about maps into flag
manifolds and describe a precise set of left-invariant metrics
in such manifolds with which this paper is concerned.

In Sec. III we recall the expressions for the harmonic
and holomorphic maps equations in terms of projection op-
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erators as in Refs. 1 or 8 and derive topological restrictions
for a totally isotropic map ¢: 72— F(n) to be holomorphic
with respect to a nonintegrable almost complex structure on
F(n).

In Sec. IV we construct a series of new examples of har-
monic maps ¢: 72— F(n) that are not holomorphic with re-
spect to any almost complex structure on F(n), where F(n)
is equipped with a large class of left-invariant metrics. Then
using Ref. 9 we see how these maps generate two-tori into
QUU(n)).

The content of this paper was originated during the peri-
od of my doctoral thesis.'°

H. SOME BASIC FACTS ABOUT MAPS INTO FLAG
MANIFOLDS

A flag manifold is a homogeneous space G /T, where Gis
acompact Lie group and T is any maximal torus. We denote
by F(n) the flag manifold with G = U(n) and

T=U(1)X---xU(l).
NI~

n times

The Killing form of U(n) is a positive-definite inner
product (,) on the Lie algebra u(n), and one has the decom-
position

u(n)=pou(l)e---ou(l).
N
n times

If ¥ isa Lie algebra over R and p s a subspace of 4, pis
called a Lie triple system if given X, Y,Zep then [ X,[ ¥,Z] Jep.
Let us recall the following result due to E. Cartan.

Theorem 2.1: Let G be a Lie group and H be a closed
subgroup of G, but let M = G /H be a symmetric space. Let
% =peah, where 9 is the Lie aglebra of G and 4 is the Lie
algebra of H. Let s be a Lie triple system contained in p. Put
S = exp(s). Then S has a natural differentiable struture in
which it is a totally geodesic submanifold of M satisfying S,
= 5. On the other hand, if S'is a totally geodesic submanifold
of M and p,€S, then the subspace s = S, of ¥ is a Lie triple
system.

Proof: See Ref. 11.

As a consequence of Theorem 2.1 we see that F(»n) can-
not be a symmetric space.

We have p = 2 E,, where SC N * is the set of roots
and E; is the root-space corresponding to seS. We have
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re C=S;,E"

where S’ is the subset of complementary roots.

A T-invariant almost complex structure on F(n) corre-
sponds toa T-invariant endomorphism Jof p withJ % = — I.
Such endomorphisms correspond to some decomposition of
S=S5" eSS, where

S !'={—a,acs*}

and

peC=p.o &po1 = ( Yy Es) EB( > Es)‘
R €S eS8~
The almost complex structure is integrable precisely when
S * is the set of positive roots with respect to a choice of
fundamental Weyl chamber Din u(1) & - @ u(1).

A general (T-invariant) almost complex structure is
specified by whether or not it agrees with J on each
E o E_,, so there are 2/5"! possibilities, but only n! [order
of the Weyl group of U(n)] are integrable.

Now we define a family of left-invariant metrics on
F(n),namely: Let 4 and B in p and consider the inner prod-
uct

(A4.B),_ =3 tr(aE,AEB*),
ij
where
i
(0 P P . O\
0
E = N ,
0=t 1 0
0

o J

a=(a’), a=d'>0.

If we restrict our almost complex structures in F(n) to
the integrable ones, we can see that

g(a,,...,a",a, + Gy, 2+ @y @y + @, )
give all left-invariant Kahler metrics on F(#n). See Refs. 12,
10, 13, or 14 for more details. It is worthwhile to point out
that if we consider F(n) with the normal metric induced
from the natural bi-invariant metric on U(#), it is not a
Kaihler manifold.

Let C” denotes the trivial holomorphic vector bundle
M?*XC"over M2,

We use extrinsic differential geometry and think of ¢:
M2 F(n) as a map or a subbundle of C" via the pullback of
tautological defined vector bundles on F(n). Note that we
also think of F(n) as the set of n-tuples (L,,...,L, ). Here L;
is a one-dimensional subbundle of C", L, is perpendicular of
L; if i#j, and L& --* @ L, = C". Then the tautologously
defined vector bundles on F(n) have as fibers over a flag
(L,,...,L, ) the vector spaces L,,...,L,, respectively.

Asusual, weidentify asmoothmap ¢: M >~ CP "~ ' with
asubbundle ¢ of C" of rank one that has fiber at xeM given by
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&, = Ty, where T is the tautological line bundle over C
P"~ ' ie., ¢ =¢*(T). Any subbundle ¢ of C" inherits a
metric denoted by (,), and a connection denoted by D,
from the flat metric and connection d on C”.

Explicitly,
(VW) =(V,W), VV,Wep,, xeM,
and
(Dy), W=MH,(3,W), Wel($), ZeT(M)"'°.

Here I1,:C" - ¢ denotes the Hermitian projection in the sub-
bundle ¢.

Note that we always describe F(#) in terms of the natu-
ral embedding F(n)=>CP"~'X---XCP"~'. So ¢:
M?*_F(n) is described as ¢ = (II,,..,II,) where II,:
M?>-CP"~'and ILIL, = §,,11,, IT¥* = 11,.

Now let g:M?- U(n)-g; this can be thought of as
g= (X,,...X,), where X, is a matrix with n rows and one
column and gg* = I. We introduce the orthogonal projec-
tions I1,(g) =X, X%*,...I1,(g) = X,X* Hence we must
havell, + -+ 4+ I, =1 and ILII; = Oifis4jand I} =11,
since g*g =Tand X *X; = §,;.

Alternatively, we can think of II, as Il,(g) = gE,g*,
where E, is already defined. Gauge transformations act on g
as

(XppooX,) = (Xihyn X 1),

where
hy
eU(n).
h,
The Gauge potential is
X1d,(X)
A, =

X*9,(X,)
and the covariant derivative is
Du (Xl"--’Xn ) = (nl(au (Xl))’-"!ﬂn(au (Xn )))’

where u=3/9Z or 3/dZ. By composing g with
M:U(n) - U(n)/T = F(n), we can think of ¢ = Ilog:
M?_F(n)as¢ = (I1,,...,I1,,). Then each such ¢ determines
tautologously defined vector bundles I1,,...,IT, over M 2. Let
dll;/3x = d,11,/dx be the covariant derivative of II; with
respect to x. We call the partial second fundamental forms of
¢ the maps

4=, =1, 2% if iz
Ox
Note that 4 JeHom(I1,,I1;) and 2,4 / is the second
fundamental of the span of I1,.
Now if we think of M? as a complex one-dimensional
manifold, then we define

) dll, oIl
on, _ 1(—‘_,/——_ i __)
Ix dy

oz 2

and
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all, (8H an,.)
—_— = +\) —_— 1 —_—{ .
9z ax dy
We also define
L= 3 A Ay= 3 A,
i(#) i(#)
where
all; L a1l
49=TI, J d AY =1, L,
2=ty z iz

lli. HARMONIC AND HOLOMORPHIC MAPS INTO FLAG
MANIFOLDS

We now study the energy integral in terms of projection
operators and write down the Euler-Lagrange equations for
our variational problems.

Definition 3.1 Given a smooth
¢ = (I1,,..IL,): M>~(F(n)=U(n)/1.8,_ i),
I1, = ¢E;¢*, we define the energy of ¢ as

1 2 all, an,,> <an,. all, >)
- — —_— = V
E(¢) = 2;fz(<az’az g.,+ aZz’ dZ 1) ¢

= 3 [ axazatyy,
ij=

map
where

=3 f it (A UATY,
ij=1JM?
where u=Z or Z.
Proposition 3.2: Let ¢ = (I1,,...,I1,,): M*—(F(n),g,) be

any smooth map. Then

(SE)(S¢ ()= —2 Re[ fM< Al SZ )Vf]

- 2))

where u = Z or Z, {{ )) denotes the L >-Hilbert inner prod-
uct, and &7, = ( MLJ‘), where M;“j —diiqii
Proof: By definition

. a1, .
E= au<ni __J’Hi aHJ >Vg
M2 du du

Then

SE = 2Re[f (a4 [1,6(A 1))V,

=2Re{sza”< A [47q] -1 -z—’Z)Vg]

- _2ReU a"f<A{.;',A;;f,q)]
MZ

-2 RC[GMz <a”A }j,g—;) Vg]

= —2Re((5, 22} since Re{a'([4 % ].a)} =0.
"
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Corollary 3.3: Let ¢ = (I1,,...,I1,):M?>-(F(n).g,),
where g, is any left-invariant metric on F(#). Then ¢ is har-
monic if and only if

a a
—_— a — a =0
ax(ﬂx)+ay(&fy)
if and only if
a a
%2 — dn =O.
2z Z)+az( 2)

Proof: By the above and according to the fundamental
lemma of the calculus of variations, we have that ¢ is har-
monic if and only if

J a3 d
R e M“ = e Ma —_— Ma =0-
e{az( z)] ox ) 5 )
Equivalently, we see that
ad a (8 ad )
— (4 —(ZE) =2| —( A —(%) ).
BZ( z)+az( z) ax( x)'l‘ay( 3)

Now let [1,n] = {xeZ; 1<x<n}. Consider D = {(i,i);
1<i<n} and S * to be a partition of ([1,n] X [1,n] —
containing (n> — n)/2 elements such that if (ij)eS * then
(/)¢S *. We denote S~ as the complement of §* in
([Ln] X [1,n] — D). WecallS + apositive systemin [1,n].

Let £°and E denote the d and 3 energy, respectively,
defined by

B.= > | g,
(iHeS+ IM?
and
Es. ()= Y f[ALZ'|2Vg.
(if)eS*+ JM?

Therefore ¢ = (I1,,...,I1, ): M*— F(n) is holomorphic with
respect to the almost complex structure determined by S * if

and only if
Es. (¢) = f |[4%)*V, =0
(1‘/)eS+
ifand only if 4% =0 V(ij)eS .

Definition 3.4: Let ¢ = (I1,,...,I1,, ): M* - (F(n),g,) bea
harmonic map. Note that ¢ is called totally isotropic if
[ 2,%7], =0, where [« ;, 3], denotes the off diag-
onal part of the n X n matrix [« ;, /% ].

Now by using the Koszul-Malgrange theorem, we can
prove thatif¢ = (I1,,...,I1,): M>—(F(n),g,)is a totally iso-
tropic map, then .« j{eHom(II [,I1;) =II* ® I, is a holomor-
phic section of the line bundle IT¥ ® IT; over M when the
total space of such bundle has a suitable complex structure.
See Ref. 14 for the details of such fact.

We now prove a result for harmonic maps
¢ = (I1,,..,I1,): T? = S ' xS '~ (F(n),g,) that consists of a
purely topological restriction for ¢ to be holomorphic with
respect to some nonintegrable almost complex structure on
F(n).

Proposition3.5:Let ¢ = (I1,,...,I1,,): T?—(F(n),g,)bea
totally isotropic map, holomorphic with respect to some
nonintegrable almost complex structure on F(n) but not
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with respect to any integrable one. Then ¢, [I],}] =+ =¢,
[I1,] = 0, where ¢,[II,] denotes the first Chern number of
IT,.

Proof: We give the proof for n = 3, and for arbitrary the
proof is similar.

Without loss of generality we can assume, say, that
o 240, &3 #0, and o % #0, otherwise ¢ would be holo-
morphic with respect to some integrable almost complex
structure.

But 7(T?) ® IT¥ ® I1; has a holomorphic section if and
only if —¢,[T?%] +¢,[I,] — cl[Hj] =[] — ¢ [I1;]
>0.

Therefore

¢ [;]1>¢,[11,],

¢, [M,]>¢,[115],
and

¢ [31>¢, (111,

ie,c,[I1,] = ¢,[11,] = ¢,[115]. But I, + II, + II;is equal
to the trivial bundle over T2 hence c¢,[II,]
+ ¢, [IL,] + ¢,[115] = 3¢, [11,] =0. Therefore
o[} = ¢/ [II,] = ¢ [II;] = 0.

V. EQUIVARIANT HARMONIC MAPS INTO FLAG
MANIFOLDS

In this paragraph, we will study harmonic maps that are
equivariant with respect to an S ! action on the space of har-
monic maps from S'XR to F(n) in the sense of Palais.!’
Such equivariant harmonic maps will provide new examples
of equivariant tori 72 = §' ' X.§ ' into F(n) or more generally
equivariance harmonic 72 =S'XS" into the loop group
QU(n)).

Often interesting examples of solutions to nonlinear
problems are found by examining an equivariant case. The
assumption of equivariance under a continuous group action
whose orbits have codimension one in the domain manifold
reduces a partial differential equation to an ordinary differ-
ential equation; then we essentially use the theorem of exis-
tence and uniqueness of solutions of ordinary differential
equations.

Now let us recall some useful facts from the general
theory of equivariant harmonic maps.

Let Gbe a compact, connected group of isometries of M.
An immersion f: N— M is called G-invariant if there exists a
smooth action of G on N such that g:f=f'g, VgeG. The
submanifold f is said to be minimal if its mean curvature
vector field vanishes identically.

Definition 4.1: By an equivariant variation of a G-invar-
iant submanifold /2 N-» M, we mean a differentiable vari-
ation f;: N-M, —e<t<e, fy =/, through submanifolds
such that g-f, = f, - g for all geG and all t. We recall the fol-
lowing useful result of Hsiang and Lawson.'¢

Theorem 4.2; Let N be a compact manifold and f: N- M
be a G-invariant submanifold of M. Then f:N —» M is minimal
if and only if the volume of N is stationary with respect to all
compactly supported equivariant variations.

These results have a close relationship with the theory of
harmonic maps if one recalls that every minimal surface is
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harmonic in some conformal structure. Furthermore, if
¢:(M,g) - (N,h) is anonconstant, harmonic and conformal,
then it is a minimal branched immersion.

Let G be a group acting on Map(M,N) and let E:
Map(M,N) - R be a C' function invariant under the G ac-
tion. A symmetric point of Map(M,N) is an element of the
set = = {¢Map(M,N); g ¢ = ¢ YgeG} of points fixed under
the action of G. The principle of symmetric criticality states
that in order for a symmetric point ¢ to be a cricital point, it
suffices that it be a critical point of E |z . Furthermore, £ isa
totally geodesic submanifold of Map(M,N). This principle
is very useful in our present case, since the energy is invariant
under the circle action because of the cyclic property of the
trace. See Ref. 15 for more details.

Now we study the differential equations found in Ref.
17, adapted to our nonsymmetric case.

Consider p:S'-U(n) given by plexp(y —1 6))

= exp(46), where A is some fixed matrix in #(n) and we
also assume exp (27A4) = L.

Let d/dt be a basis of R and consider dp(0)(d/
dt) = Aeu(n). Assume further that the set of equivariant
harmonic maps

F, ={¢eC=(S'XR; F(n));
dlexp (W — 1 0),0) = plexp(v — 1 9))-f(1),

where

S =[i(8),...f, (1);
fi=£, fi(O-fi(t)=0

ifi#jand f*(¢),and 2.£;(¢) = I, forallexp(y — 1 8)eS '}
is nonempty.
Note that U(n) acts on F(n) by conjugation:

U(n) XF(n)—F(n),
(A4,X)->AXA4 1.
Let ¢: (I1,,...,IT,): S'XR— F(n) given by

dexp(V — 1 6),0) = (I1,(6,1),...,]11,,(6,1))

= exp(460) A(1).
So I1,(6,t) = exp(A40)f; (t)exp( — AB).

Now by studying special cases of a general second-order
ordinary differential equation, we will construct examples of
harmonic maps ¢ = (I1,,...,I1,): T?> =S X S ' F(n) that
are not holomorphic with respect to any almost complex
structure on F(n), where F(n) is equipped with any left-
invariant metric defined in Sec. I1.

Consider a local chart UC R? for a Riemann surface M 2
and B,, B, in u(n) such that [ B,,B,] = 0. Then we can de-
fine locally the following map:

_®
U-U(n),

(x,p)—exp(B,x + B,y).

We have seen that ¢~$ ingucgs a map ¢ = (II,,...IT1,):
U-F(n) given by Il, =¢E,¢*=exp(Bx+ By) E,;"
exp( — B;x — B,y). We can prove the following.

Lemma 4.3: Let ¢ = (I1,,...I1,,): U~ F(n) given by
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I, = exp(Bx + B,y) E; exp( — B;x — B,y),
where B,,B, are in u(n) and [B,,B,] = 0. Then
o . = a’exp(Bx + Byy)E B \E; exp( — B,x — Byy),
iz}
o, = Y a’ exp(B,x + By)E,B,E;
Xexp( — B,x — B,y).

Proof: We will prove the expression for .7 ., and the one
for <7, is proved similarly. We have

a’4’, = o', i;lx; =d&'T(B, exp(B,x + B,y) E,
-exp( — Byx — B,y) — exp(B,x + By)E,B,
Xexp{ — B,x — B,y)).
But B,:B, = B, B, so we have
@', (exp(B,x + B,y) (B,E; — E,B,)exp( — B,x — By))
= &' exp(B,x + B.y)E;-exp( — Bix — B,y)

9
ox

Xexp(Bx + Byy)-[B,,E;|exp — (B;x — B,y)
= &’ exp(B,x + B,y)E,B,E; exp( — B,x — B,y).

Now we can find the Euler—Lagrange equations for the equi-
variant maps defined above.

Proposition 4.4: Let ¢ = (I1,,...,I1,):U->F(n) be a
smooth map such that [I, =exp(Bx + By)
-E;-exp( — B,x — B,y), where B, and B, are in u(n) and
[B,,B,] = 0. Then ¢ is harmonic if and only if

Y a"E,;([B,diag B,] + [B,diag B,])E; =0,
where diag(B;) denotes the diagonal part of B, i = 1,2.
Proof: According to Corollary 3.3 ¢ is harmonic if and
only if
a3 a
—(H +—(Z%) =0.
O ( 8y( $)

Hence let us compute (d/dx) (%) and (3 /dy)(«/;). We
have

(/%) =a"B, exp(B,x + B,y)E,B\E; exp( — B;x — B,y)

—a” exp(B.x + B,y)E,B\E; B, exp( — B\x — Byy)

Xexp(B;x — B,y) [an aifEiB,Ej]exp( — B x —Byy)
w

i#j

= exp(B,x + B,y)a"E,[ B, diag B, E; exp( —

Simlarly, we prove that
a i .
a_y () = exp(Bx + B,y)a"E; [ B,, diag B, E;

Xexp( — Bx — B,y).
Theorem 4.5: Let
b= (Mall,)s =B — T2 (F(m) g, _ 1)
1eeesdl, )0 aZ@ﬂZ 84— (a'h)
be an equivariant map defined as in Lemma 4.3, where

IT; = exp(B,x + By)E,;-exp( — B,x — B,y),

and B,,B, are in u(n) with [B,,B,] = 0. Furthermore, as-
sume E, B, E; #0 for some 1<i#j<n, k= 1or 2, and that

Y aE,([B,, diag B,] + [B,, diag B,])E; =0.
Then ¢ is harmonic with respect to the metricg, _ ., butis
not holomorphic with respect to any almost complex struc-
ture on F(n).

Proof* According to our hypothesis and Proposition
44., ¢ is harmonic. On the other hand, &4
=7+ —1&Yand &% =A% + — 1 &7 are both
nozero according to our hypothesis and Lemma 4.3. There-
fore, according to the holomorphic map equations in Sec.
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B,x — B,y).

r

III, ¢ is not holomorphic with respect to any almost complex
structure on F(n).

The result above allows us to construct several examples
of harmonic and nonholomorphic maps from T2 to
(F(n).g,). For example, let

L R-U(n),
t—exp(Bt),
where
0 ay—1 0 0 0
af =1 0 0 0 0
B— 0 0 0 By -1 0
0 0 BV —1 0 0
0 0 0 0 0
€u(n),

and a and S are nonzero real numbers.

Then
2 n
exp(B) =I+Br+ 80" ... [ BO"
2! n!
Hence
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cos at 0 0 0 0 sin at 0 0
0 cos at 0 0 sin at 0 0 0
0 cos Bt . 0 0 0 0 sin Bt
— —1
SiDexp(B0) 0 0 0  cosBt 0 0 sinft O
0 0 0 0 0 0 0 0

Let us consider as the first set of examples the case B, = B, = B, where a and S are nonzero real numbers.
Now let us consider ¢: R' — U(n) given by ¢(x,p) = exp(Bx + By). Then ¢ induces a map:

R2
Y Gmiate Gria)E
given by

F(n)

¢(x + %II_I_ ny+ % m) = &(x,y,(El,...,E,, )gZ *(x,y) =exp(Bx + By)(E,,....E, )exp( — Bx — By).

Since diag B = 0, according to Theorem 4.5, ¢ is harmonic with respect to any left-invariant metric on F(#) but is not
holomorphic with respect to any almost complex structure on F(n), since E,BE, = E,BE, = af — 1 #0.

0 ap —1 0 0 e 0 0
ay —1 0 0 0 - 0 0 0
0 0 0 ay/ —1 0 0 0
B 0 0 ay —1 0 0 0 cutn),
0 ag —1 0
0 0 0 0 0 a-—1 0 0
. . . 0
0 0 0 0 0 0 0
such that 2k<n.

Another family of harmonic with respect to any left-invariant metric on F(n) as defined in Sec. II but nonholomorphic
maps is given by

0 a) —1 0 0 0
ay —1 0 0 0 0
B = 0 0 0 By =1 0
=
0 0 By —1 0 0
0 0 0 0 0
and
0 B —1 0 0 0]
By —1 0 0 0 0
B 0 0 0 ay —1 0
2| »
0 0 ay —1 0 0
0 0 0 0 0

—

where a and B are nonzero real numbers such that a/BeQ. &(x + 2llny,y + 2lImy)

Then B,. and B, are in u(n), [B,,B,] =0, a‘nd furthermore - a(x’y) (BB, )% (x,9)

there exists y€R such that a-y and 8-y are integers.
Now let us consider = exp(Bx + By)(E,,....E, )exp) — B\x — Byy).

But diag(B,) = diag (B,) = 0. Then again, using Theorem

2
¢ R —F(n) 4.5, we see that ¢ is harmonic with respect to all left-invar-
2y(Ze2) iant metrics defined in Sec. II but not holomorphic, since
given by EB\E, = E,B\E, = ay/ — 1#0.
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We can generalize this example by taking B,eu(n) of
the following form:

Bl 0 - 0
0 B) :
B =] ° R
1 B ll(
0 0 0
where
0 a —1 0 0
B ay —1 0 0 0
oo 0 0 BV—1
0 0 B —1 0
and
B,
Bz == B’; J
0 0
where
B! B —1 0 0 0
1 o 0 0 ay—1f
0 0 aqy —1 0
such that 2k<n. Furthermore, we also assume that a,/
B, =+ = a, /B, are all rational numbers.

It would be interesting to look for another way of gener-
ating harmonic with respect to all left-invariant metrics de-
fined in Sec. II but not holomorphic with respect to any
almost complex structure on F(n). Another class of har-
monic but holomorphic maps are the Eells-Wood maps. See
Refs. 12 or 14 for more details.

It would be nice to understand the stability of the maps
that we have built in this paper with respect to the family of
left-invariant metrics defined in Sec. IL

We notice that Lemma 5.4 in Ref. 14 would be true in
this case, and to use this lemma in a profitable way, it would
be necessary only to understand the stability of such maps
when F(n) is equipped with Kéhler metrics.

Now let us show how these examples above provide ex-
amples of harmonic and nonholomorphic maps from 72 into
YU(n)), where S{U(n)) is equipped with thes usual sym-
plectic Kahler metric. To see this, we sketch the holomor-
phic and totally geodesic embedding of F(») into Q{U(n))
according to Ref. 9.

Let us now recall some basic facts about Q(U(n)). See
Ref. 7 for many more details. Let Q(U(n)) = {£ S' = U(n)
smooth such that /(1) = I'}. We can put a group structure in
UU(n)) defining (£g) (¢!~ 1©) =fle/~T%g(e/~T9).
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The simplest case is when G = U(1).Then Q{U(1)) has
components indexed according to the winding number, and
each component can be identified with the space of functions
£ §'SR such that f(1) = 0. The Fourier series of such a
function is

¢: z a,z,, 4_,=4a, Za,,=0,
A= — w n
therefore the coefficients a,, for n >0, determine ¢ com-
pletely. Hence each component of (U(1)) becomes a com-
plex vector space of infinite dimension.

For non-Abelian G, (&) is not linear any more. How-
ever, it still is an infinite-dimensional manifold, and we can
again use Fourier series to introduce complex coordinates.
We know that 2(G), is equal to {2(g) and can be represent-
ed in Fourier series as

¢= > a2, a_,=—ar, >a,=0,
n= — & n

where g, eg.. If G = U(m), then aq,€C,, and a¥ is the trans-

pose conjugate matrix. So 1(G), becomes an infinite-di-

mensional complex vector space.

Now we can define several almost complex structures
on )(G), namely if ¢cl(G),, we define

J$= 3 av=Taz"

n= - o0

where ¢, = + 1 and a_, = F 1. The almost compiex
structure obtained by making a, = 1, Vn >0, is integrable
and is called the canonical almost complex structure.

The next point is to define a canonical Kihler structure
on Q(G). To define a Hermitian metric on (G) is again
enough to define in 1(G), and translate it via the group
action. There are several natural left-invariant metrics on
Q(G) (see Ref. 7 for more details), but it seems to be the
most natural when given with respect to the Fourier coeffi-
cientsby 2,_, ntr(a,a¥) where g, is seen as a matrix. An
important reason for this metric be the natural one to be
considered relies on the fact that it is Kéhler. The symplectic
form associated is given by

_____1__ 27 ,
8 = f (#(6),4(8))d6,

where (,)is given by the Killing form metric and
&'(8) = (dg/d6)(8).

Now let us recall the natural totally geodesic and holo-
morphic embedding of F(n) into Q(U(n)) as in Ref. 9.

Let I' = Hom(S ',G) the subgroup formed by closed
geodesics. Clearly G acts on I by conjugation. Furthermore,
each connected component is a G-orbit, i.e,, is of the form
{gvg~"', geG and fixed yel'}.

We know that plexp(y — 1£)) = exp(#£) for some £eg
such that exp(27€) = I. We note that gyg~'(exp(y — 11))

= gexp(t£)g~ " = exp(t Ad{g)£). Therefore the G-orbit of
y is of the form Ad(g)é=G/H where H = {geG;
Ad(g)E = £}, i.e., H is the centralizer of a torus.
Then we can define the embedding
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¥ G/H~Q(G),

1

gH—gyg—".
If we put on G/H the pulled back Kihler metric of
Q2 (G) and consider compactible almost complex structures,
we can see that ¥ is totally geodesic and holomorphic.
In the case we are primarily interested in this note it is
enough to consider G = U(n) and

J= 14,

where A, #4, if i#j, A,€Zso exp(27E) = L.

Letg,_ . be the Kihler metric obtained pullingback
via ¢ the natural Kéhler metric on Q(U(n)) constructed
above. Now let ¢: T~ (F(n), g, _ ;) be a harmonic but
not holomorphic map with respect to any almost complex
structure on F(n). Now since ¥: (F(n), g,) - QUU(n)), the
Kihler metric is totally geodesic and holomorphic we have
that ¢ = yog: T2 Q(U(n)) is harmonic but not holomor-
phic.
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A linear pair for self-dual gauge fields is constructed for the metric ds’ = g, dz dZ + g,; dy dy.
It is shown that for consistency g,; and g,;, apart from a possible overall conformal factor, are
given in terms of two Liouville fields of equal and opposite curvatures. The null surface
corresponding to the pair and the homogeneous solutions, playing a fundamental role, are
constructed explicitly. The five-dimensional space of y,7,z,Z and the spectral parameter A is
studied. The proper transformation of A corresponding to holomorphic ones of y and z is
found. Known monopole, instanton, and (quasi)periodic solutions are all shown to emerge
systematically as particular cases of our formalism. As examples of new possibilities, the case
of accelerated observers and that of cosmic string backgrounds are presented.

I. INTRODUCTION

Linear pairs a la Zakharov and his co-workers'~ furnish
a supple and powerful method for explicit construction of
self-dual gauge fields. This formalism is closely related to the
language of twistors.*> Linear pairs were adapted to the con-
struction of monopoles by Forgacs et al.>’ They used Carte-
sian and cylindrical coordinates for the pair. Hyperbolic and
spherical coordinates have been used successfully to con-
struct instantons®° containing monopoles as limits and peri-
odic'® and quasiperiodic'' solutions. In the general ADHM
method'? the final nonlinear constraint cannot be resolved
except in very particular cases. Really complete and explicit
solutions with unlimited ranges of indices have, up to now,
been obtained for higher Atiyah—Ward classes only for re-
stricted symmetries.*!' One may, for example, have axial
symmetry along with the possibility of periodicity in time. In
this context the proper choice of coordinates, adapted to the
symmetry in question, is vital. Then independence with re-
spect to one or more coordinates can be implemented from
the beginning.

Here we present the linear pair for a class of metrics
from which the interesting particular cases emerge directly
and systematically. Thus different approaches are encom-
passed and unified. Moreover, our formalism leads to a deep-
er understanding of the geometry of self-duality in four di-
mensions. The privileged class of metrics, permitting
consistent construction of a linear pair, is shown to be given,
apart from a conformal factor, in terms of two Liouville fields
of equal and opposite curvatures. This is the basic result lead-
ing to the rest. The geometry is elucidated by constructing
the null surface associated to the pair. The homogeneous
solutions, the kernels of the mappings induced by the opera-
tors D, and D, of the pair, are given explicitly. Their role is
fundamental. The five-dimensional space formed by the co-
ordinates y,,2,Z and the spectral parameter A is studied to
better situate the null surface. A transformation of A accom-
panying holomorphic ones of y and z (with conjugates ones
for y and Z) is shown to lead to a better understanding of the
general structure.

All the solitonic solutions cited above are extracted sys-
tematically from the general case as particular ones. The
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case of an accelerated observer is also treated.

Different choices of coordinates in locally Euclidean
space do not exhaust the content of our formalism. As an
example we indicate how the metric of a class of cosmic
strings fits into this framework. Other possibilities should be
looked for.

Our formalism seems to point out the minimal link
(through equal and opposite curvatures) between two-di-
mensional conformal properties leading to nontrivial results
in four dimensions. This aspect should be explored in
broader context not limited to self-dual gauge fields.

Il. THE LINEAR SYSTEM

We work in complexified four-dimensional space, i.e.,
we regard the space-time coordinates x,, x,, X,, and x, as
complex variables. Let the metric be

ds* =g dzdz + g5 dy dy, (2.1)
with

z2=x3+ 10X, Z=Xx3—iXp

y=x,+ix; y=x,—ix, (2.2)
and

8z = 8un (Vi2J:2) = @H™' (u=y2). (2.3)

We coin the term “biconformal” for this class of four-dimen-
sional metrics, for reasons that will become clear later on.
The self-dual Yang-Mills equations,

Fu= (P Ei‘/—lg—leﬂmﬂFaﬁ’ (2.4)
take a very convenient form in biconformal metrics:

F, =F;; =0, 2.5)

g°F; +87°F,; =0. (2.6)

They can be viewed as two curvatureless conditions on the yz
and the yZ planes and a third constraining equation. An
associated linear system is easily constructed by requiring
that the three self-dual equations be encompassed into a sin-
gle one. Define

p=(8”/85"?,

and

2.7
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A, =Ap~ 4, + A, (2.8a)
A= —ApA; + A, (2.8b)

where A is a complex parameter. Then it is possible to find
two linear differential operators D, and D, such that

Fi,=DA, — D,4, + i[4,,4,)
=F,, + A%F;; — Ap~'(Fz + p°F5),
for all values of AcC. We get
Di=2p7'0;+3,—[Ap7'd:Inp+39,Inp)id,,
(2.11a)
D,= —Apdy+3,+[—ApdyInp+3,Inplid,.
(2.11b)
The self-dual potentials A4, and 4,, which from Eq. (2.10)
can be interpreted as curvatureless on some complex two-
dimensional surface =, must be of the following form:
A, =Dy, (2.12a)
A, = i(Dy) ¢y, (2.12b)
where 1 belongs to the complexified gauge group G ©. These

are precisely the linearized equations of Belavin and Zak-
harov? generalized to biconformal metrics.

2.9)
(2.10)

1ll. THE ROLE OF TWO LIOUVILLE FIELDS

There is an implicit assumption in our derivation of the
linear pair. Equations (2.12) hold true if and only if the
operators D, and D, commute for any value of the spectral
parameter A:

VieC, [D,D,]=0. (3.1)

This consistency condition does not hold for an arbitrary
biconformal metric. A direct calculation yields the con-
straints:

L, Inp=393;Inp=0, (3.2)

p 3% np—pdinp=0. (3.3)
Equation (3.2) implies

p =p2(22)/p, (), (3.4)

which means that the metric, up to an overall conformal
factor, is Kéhlerian. Then Eq. (3.3) becomes

pridtnp,= —pi?d;Inp =K, (3.5)
for some constant K. We recognize Liouville’s equation.
Therefore a full parametrization of the admissible biconfor-

mal metrics reads:

1 + K@, ( 9: @295 52)"’
1 — Koo\ 3,0,0;@,)
where w, (¥), w,(2), @, (¥), and @,(Z) are independent arbi-
trary holomorphic functions. Hence two-dimensional sur-
faces with opposite constant curvature play a special role in
the geometry of self-duality. From now on, by biconformal
metric, we mean this restricted class of metrics.

p= (3.6)

IV. THE NULL SURFACES

There is a standard technique to solve any system of
first-order, linear partial differential equations, which is the
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method of characteristics. Its application to our linear pair is
straightforward. Let the components of two vector fields
V,(r.z,y:z,A) and V,(y,2,y.Z,4) be given by the coefficient
functions of the differential operators D, and D,. These vec-
tor fields V, and V, define the tangent planes to some (com-
plex) two-dimensional surface = called the characteristic
surface of the differential system. The parametric equations
of X depend upon two complex variables a and 5

H_o Py
da aB
dy dy
- = - , —=0,
da P a
oz az
= =1, —=0, 4.1
da aB “D
G _o T _ g
da * 9B ’
9k _AApdyinp—3,1np),
da
aA -
a—ﬂ—: —A(Ap™'d; Inp + 9, Inp).
Up to arbitrary integration constants, we get:
y=5,
z=a,
F=9a), L= _ip, (42)
da
- = dz
= N —-—:/1 _l’
z2=2z(B) 2B P
d d
A=A , —((Ap™H =—(1p) =0,
(a,B) da(p ) d,B(p)
which imply (on 2):
172
1:(-@.#@) s 4.3)
da df
dj dz)l/Z
= ——=/—] . 44
P ( de| aB 44
It follows that the Riemannian metric on X is
ds’ =g, dzdz + g,; dy dy
dz d)':)
=(gs — - —\dad 4,
(g dﬂ+gyy ) B (4.5)

=0

which means that the characteristic surface of the linear pair
is a “null” surface or a “light” surface in Euclidean and
Minkowski terminology, respectively.

V. THE HOMOGENEOUS SOLUTIONS

We still need to solve for ¥(a) and Z(5) to get the ex-
plicit equation of the null surface. We shall use the general
parametrization of the ratio p in Eq.. (3.6). On 2 we have

2 _ dj’_/ da
dz/dp

_ (l +K'a>1(l9)51(a))2 9oty .aﬂazfﬁ/da) (5.1)
1 — Kao()3,(B) ) dsw, d,@,\dz/dB)

i
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which holds true if and only if
0, 0,050, _ 0p0,0,®,
(1 — Ko,(@)3,(B) ) (1 +Kw1(ﬁ)al(a))2('52)

Equation (5.2) states that ( — @,,0,) and (w,,®,) define
the same solution of the Liouville’s equation

e 92, b= —K, (5.3)
whose general solution is
3.pdgq)V?
®(a,8) =In (GaP Ip ) (5.4)

1—Kp(a)g(B) ’
where p(a) and ¢(B) are two arbitrary holomorphic func-
tions of the independent complex variables @ and S. The
invariance group of Liouville’s equation is the group of lin-
ear fractional transformations. Indeed the solution is invar-
iant, & = &', under the homographic transformations

p—p = (ap+ b)/(Kcp + d),
q—q = (dg+ ¢)/(Kbq + a),

(5.5)
(5.6)

where a, b, ¢, and d are arbitrary complex constants with
ad — Kbc#0. It follows that Eq. (5.2) is solved by

@, = ( —aw, + ¢)/(Kbw, — d), (5.7
@, = (aw, — b)Y/ (Kcw, — d). (5.8)
These expressions provide an explicit parametric equation of
the null surfaces together with
J"y dz )1/2

_(_E'dﬂ

_ (3, @, d, ml)‘/z( do, da, )1/2

B 0,0, 6,0, dw, do,/

In fact, the null surfaces 3 are parametrized by the four

complex numbers (a,b,c,d)eC* modulo any complex num-
ber § #0

S(a,b,c,d)=3({a,bbte,ld). (5.10)

Hence the space of null surfaces forms a complex projective

three-dimensional manifold CP®. Although CP? is compact

and cannot be completely spanned by three complex coordi-

nates, it is useful to introduce a three-dimensional coordi-

nate system. When d #0, we can solve fora/d, b /d, and ¢/d
as functions of y,z,5,z, and A:

a _AQ+ Ka,w,0

(5.9)

d AKw,0,0 —Q’

b _ 400 -3 (5.11)
d AKw,w, -~

€ _ _AwQd +@,Q

d AKo,w,0t—Q°

with @ = (9, 0,3, @,) ~""*and O = (3; ®,3; B,) ~ V2
By definition, these functions are constant on a null sur-
face. These independent normal coordinates to X provide an
implicit equation of the null surface. It follows that the gen-
eral solution to the homogeneous linear pair,
DX=D,X=0, (5.12)

is an arbitrary algebraic function of a,b,c, and d, homoge-
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neous to degree zero:
X=X (l , b , i) .
d d d
It is also convenient to express the null surface equations in

terms of complex two-spinors. Equations (5.7) and (5.8)
can be written as

(5.13)

b a]
)= @[], 16
where the complex (2X2) matrix (g) reads:
1
) =

(q 1 + szlalwzaz

[wl(l—Kw@z) @,(1 + Ko,®,) ] 5.15)

o,(1 + Ko@) —a,(1 —Ko@,)l

Any point x=(y,2,5,Z) in four-complex-dimensional space
with biconformal metric can be represented by the matrix
(g) that generalizes the quaternion representation of Euclid-
ean space:

P35l

Thus, many features of the Atiyah-Ward formulation of
self-dual gauge fields in Euclidean metric*® can be general-
ized to biconformal metrics.

(5.16)

VI. TRANSFORMATIONS OF THE SPECTRAL
PARAMETER

The structure of the kernels of the mappings induced by
D, and D,, as given in (5.11), suggests the transformation

dal . da—)z 172
A=l | & & | (6.1)
O do, do,
dy dz
giving, settingd = 1,
s A+KTT, Ao~
AKw 0w, — 1 AKow, — 1
C=M, (6.2)
AKo,w, — 1

Moving over to the coordinates (w,,w,) from (p,z) (with
C.F. = conformal factor)

ds = (C.F)[(1 + Ko®,) "2 do, do,

+ (1 — Kw,w,) ~* dw, da,], (6.3)
and
—1 _ —_
2, =(2)7 D=, + A1 5,
dy 1 + Koo,
_ K(o, + Aw,)
1 + Koo,

_1 —
92=(‘1“’2) D, = dw, + A LT EOD 4
dy —_ KCU2602

Ad,, (6.4)

_ K(@, + Aw,)

— =~ Ad,.
1 — Ko,w,

(6.5)
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For K =0,

D, =03w,+ A 3w,

92=302-A%1- (6'6)
Thus, starting with Cartesian coordinates, the effects of the
holomorphic transformations (y,z) —(w,(»), ®,(z)) on D,
and D, (that now have d; present) are absorbed through
(6.1).

Even for K #0, (6.1) helps in understanding the struc-
ture of the formalism. Corresponding to &, and &, define

@=(%) 4=(%) wrwa) @

dy dy
=A, +A—1:£w—25_l,4% (6.8)
' 1 + Ko, @,
-1
(Am, = (daz) A, etc.).
: dz
Similarly,
1 —_
M2=(dw2) Az:Aw\_A 1+legl Awl. (6'9)
dz ? 1 — Ko,w,

The square roots of derivatives are eliminated throughout
the formalism thanks to (6.1). This can be compared to the
passage to regular gauge in certain classes of instanton solu-
tions.'? (But in practice, it is sometimes better to stay with A.
This will be illustrated in the following sections.)

Starting with F,, of (2.9), defining

do, do,\!
12 (dy iz 12
=D\ Ay, — Do\ +ilA ]
{1+Kw,25,F

1—Kow,
1 - Kw,o, F_ ]
14+ Ko, =1’
the coefficients of 1,A,A? equated to zero gives self-duality

corresponding to (6.3). The parametrization of the null sur-
face of Sec. IV is now

=F,, +AF,. +A

@@ @@

(6.10)

@, = u, w,=y,
— —av+c¢ —au+b)
= — = — | —m—m—— Kbc#ad),
“1 Kbv—d @2 (Kcu—d ( 7ad)
A= (Kbc—ad)/(Kcu — d)(Kbv —d). (6.11)
Now
= — (Kbc — ad) s, di,= (Kbc — ad) ”
(Kbv — d)? (Kcu — d)?
(6.12)
and
(1 + Ko,@,) (1 — Kw,@,) ' = (Kcu — d)(Kbv — d) 1.
(6.13)
Inserting these in (6.3),
ds® =0. (6.14)

For b = 0, ¢ = 0 the solution is independent of K. [ Hence-
forth always d = 1 as in (6.2).]
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With &, and &2, already fixed by (6.4) and (6.5) one
can complete, in the five-dimensional complex space
(@,002,@,,8,,\), the list of coordinates and derivatives such
that

[X.X]=0, [2.9,]=0,

[2.X]=6; (j=1,.3). (6.15)
A possible choice of the X ’s is

Xi=w, X,=0, X;=a'b

X,=a'¢; Xs=Ina. (6.16)

Along with &, and &, the other derivatives can be com-
pactly written on defining

AKow, — 1 AKo,w, — 1
" ke P k@
as
—a7'D s = Koo, f, 3B, + f, 05, + K@, £, £, O,
a7 'D = f,06, — Ko@, f, Io, + Ko, /1 /, I, (6.18)

—Ds=/(@,d0,+ A d,\) + f,(w, I>,

+Ad,)—af,f,8,.

[The 2°s corresponding to other choices such as X; = b,
X, = ¢, X; = acan easily be obtained from (6.18).] The null
surface (6.11) corresponds to

dX; =0, dX,=0, dX;=0. (6.19)
Evidently,
dX,=0=dX,, (6.20)

again gives, in (6.3), ds* = 0. The operator & dilates a, b,
and c.

@s(a,b,c) = (a,b,C).
ForK=0, fi=f= —1,

a=‘—A, b=52—A(l)1,

(6.21)

cC= — (51 + sz).
(6.22)

Redefining the X ’s of (6.16), for K = 0, using simple linear
combinations as

X] = i(a), + A—l-a-iz), X2 = i(wz _ A‘IEI),
X, =40, — A3y, Xy=4i(w0,+A"'B,), (623)
Xs=lnA,

helps to display certain features conveniently. The corre-
sponding derivatives are

glzawl+A662, g2=aa)2—A(75,,
.@3=aa)l—A552, @4=802+A351,
@5=5851+52352+A8A.

Evidently, like the pair (Z,,2,), the pair (Z,,%,) pro-
vides another formulation of self-duality. Like

(6.24)

dX,=dX,=dX;=0, (6.25)
the set
dX,=dX,=dX;=0 (6.26)

provides another null surface. Parallel possibilities are evi-
dently obtained on interchanging throughout (y,z) and
(».2) or (®4,@,) and (2,,0,).
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One can envisage further transformations of the spectral
parameter. Set, for example,

¥ =((1 +Kw,@,)/(1 — Ko,@,))*'A.
For the upper sign,

D, = 0w, + (1 — Ko,®,)/ (1 + Kw,@,) )00,

D, =0w, — y Io, + 2K [0,/ (1 — Kw,@,) (6.28)

—xo,/(1 + Ko@)y 9,-

For the lower sign, d, is absent in & ,. Different representa-
tions can be helpful in solving for different types of seed
solutions to be briefly presented in the following sections.

It is instructive to note how solutions are restricted on
imposing symmetries and the corresponding transforma-
tions of the spectral parameter. Suppose we require indepen-
dence with respect to the phase o given by

mz/az — e:‘ZU.
Setting A = Ae ™,
—e—i0 A + Ko, |w,|

(6.27)

(6.29)

. | le_|w2!

AKo,|w,| — 17 AKo,|w,| — 1’
c= Ao+ (6.30)
AKo\lo,| — 1

Expressing &, and &, in terms of A, |w,| and o one sees
that for d, =0, in (5.12), one must have

X=X(b/ac). (6.31)

If one demands independence also with respect to the phase
@, where

0,/B, = %, (6.32)

A=Re— i+, (6.33)
setting only the combination

be ___(Aloy] = los)) (Alos] + o)) (634)

a (A + K |0, ||@,}) (AK o, ||@,]| — 1) ~
now leads to solutions satisfying do =0, dp =0, with A as the
spectral parameter. Such constraints are extremely impor-
tant in constructing soliton solutions to be described below.

VII. APPLICATIONS TO SOLITON SOLUTIONS

We now apply the general formalism to construction of
solitons. Suppressing derivations, one complete set of pre-
scriptions is presented. Known important particular
cases® ! are shown to emerge from this systematically. We
also point out new interesting possibilities. (Background
material can be found in Refs. 1-11.)

A. SU(2) gauge fields
Define

p 0

qg 1

with p a real function and g, in general, a complex function of
(»,7,2,Z). The ansatz for gauge potentials is

M=p—1/2

) (7.1)

A, =d,MM™" (u=y2),

A; = (UHM" )M (i=72) (7.2)
Let
1647 J. Math. Phys., Vol. 31, No. 7, July 1990

G=MM. (7.3)
The self-duality constraints reduce to (with G,=4d,G etc.)
&%(G,G"); +g%(G,G~"); =0. (7.4)

Using D,, D, of (2.11) introduce the linear pair for the 2 X2
matrix 1 as

D= (G,G~ My,

Dy = (G,G "), (7.5)
with the condition
Y(A=0)=G. (7.6)

Choose a “‘seed solution” G, and construct the correspond-
ing 1,. Prescriptions for a class of %, will be given later. The
ansatz for iteration is (with 2 X2 matrices R, and the unit
matrix I);

o =U+R/A—p)Wu_: (1=12.). (17

Here, R, and i, are independent of A. (The poles can also be
introduced simultaneously and additively.)

The poles (g,...,¢¢, ) cannot be chosen arbitrarily. For
consistency, the residue of each double pole on the left of
(7.5) must vanish. Here, the homogeneous solutions of Sec.
V play a fundamental role. It can be shown that if

D,H(yy,zzA) =0 (j=12), (7.8)
then u,, satisfying, for some constant c,,,.
H(J’J,Z,Z m) =Cp> (1.9)

provide the right choice of poles. (This can be demonstrated,
more generally, for kernels of mappings in arbitrary dimen-
sions.) One need not write and solve separately “pole equa-
tions” as is usually done. The solutions of (7.8) not only give
the poles but relate them to the geometry of the null surface.
From (5.11), define

a(u) = (uQ + K0,5,Q)/ (uKo,0,Q — ),

b(u) = (no,Q — 3,0)/ (ukow,Q — Q),  (7.10)
c(p) = (o, + 3,0)/ (uke 0,0 — Q).
One must have
H, (a(u,).b(u,)c(u,))=const. (n=12,.).
(7.11)

The proper choice of H at each stage is crucial in assuring

desirable properties of the solutions. With the poles so cho-

sen, the power of the formalism manifests itself by yielding

explicit algebraic solutions of the matrices R. Define the row

vectors

m, =M, (a(u,)bu,)c(u,)) "} (w,) (n=12,.),
(7.12)

the row vectors M being functions of a, b, and ¢ only and
¥(1) = (A = u). Proper choices of the vectors M, is again
crucial. Now

(Gn—l mI) gmn

(mn 'Gn— 1 ml )

Rn = (ﬂn +ﬁn_l) (n=12,.),

(7.13)
where G, = ¢, (4 = 0). The iterative structure of G is

C. Roiesne! and A. Chakrabarti 1647



(G,_,'mlye(m,G,_,)

(mn'Gn—l .m:)

G, =G,_, —(I+p 85"

(7.14)
Finally, to assure unimodularity, take
n 1/2
G, (phys) =(H ukﬁk) G,. (7.15)
k=1

From G one obtains p and ¢ and hence 4, and 4.
B. Seed solutions

Suppose we set

Go=diag(em+f(z),€e-f(z)—-7527)’ (7.16)

where f (z) is some suitably chosen function of z and [to
make (7.15) work] € = + 1 for an even and odd number of
poles, respectively. This evidently satisfies (7.4). Setting

o = diag(e’,ee ™), (7.17)

from (7.5)

Dh=0, D,h=a,f (7.18)
Let f(2) = F ((w,(2)). From (5.10), for A =0,

a=Kow, b=w, c= —o, (7.19)
sothat®, =b= —a/Kc (K #0).
Hence

h=F (w,) + F (b, —alc), (7.20)
such that

FA=0)=F =F
satisfies (7.18) and also

¥o(4 = 0) = G, (7.21)

For K = 0 one can consider .% ,(b,a). Correct choices of
F ,, will be indicated for particular cases to follow. Other
choices of G| are evidently possible. The foregoing example
suffices to illustrate the technique.

C. SU(N) Gauge fields

The same linear pair (the D’s) and homogeneous solu-
tions (a,b,c) are good for higher-dimensional gauge groups,
such as SU(N). But now G and ¢ are (N X N) matrices and
Mof (7.1) isnow (N X N) lower triangular. The parametri-
zation of M and G and the extraction of 4,,, 4; are all now
more complicated. Without detailed discussion of such top-
ics we briefly indicate some new features that arise.”®

At each step one can now introduce up to (N — 1) row
vectors

m® =M P(a(p,),bu,).c(u, L (1),
I=12,.],<N—1
The matrix (7.13) is now generalized to

B i)t
Rn = (”n +ﬂﬁ_1){(G’l—l.m§l")) ®mg") }( Jn—l)i,,,j,,l

(7.22)

(7.23)
where
(7)o, =mi”G,_,-md". (7.24)
This leads to
1648 J. Math. Phys., Vol. 31, No. 7, July 1990

G, =G,_, — (1 +p,fi; )G, _, -m")

Q(mltli”).Gn—l)(J—l)imj", (7-25)
and (7.15) now becomes
G"(phy:.) = (kl:ll (ﬂkﬁk )lk/N)Gn' (7.26)

For different choices of /, at each step one has different solu-
tions. This is an extra possibility arising beyond SU(2). For
SU(2) at each step /, = 1. One can generalize (7.16) to

. . . Kl T
G, = diag(e, "D, e T+D e M)
(7.27)

and set

th)
,

Y, = diag(e,e* " €,e"",....eve (7.28)

where the €’s are + 1 and
ki+k,+ - +ky=0.

The prescription (7.20) for 4 remains the same. Due to the
complications mentioned for SU(XN) at the beginning, the
solutions are best discussed in terms of the ‘“superpoten-
tial”.”® But details are beyond our scope in this paper.
Spherically symmetric SU(N) solutions have been con-
structed without using linear pairs.'*> But they can also be
obtained in this framework. This has been illustrated for
SU(3).™®

VIil. PARTICULAR CASES

The results of Sec. VII are now shown to yield system-
atically interesting particular cases.
Case 1: Hyperbolic coordinates: Let

o, =y, w,=e ¥ K=], (8.1)
and
ytan(9/2)e®, z=4(n+ir). (8.2)
Then from (2.1) and (3.6),
ds® = (C.F.)[d7* + dy?
+ sinh? 9(dd? +sin’ $dp ?) ], (8.3)

(0K < 0, —7<T<™, 0<I<T, 0@ <27).

For

C.F. = (cosh 7 + cos 7) 72, (8.4)
one has the flat Euclidean space'® and for

C.F. = (cosh )72, (8.5)

one has the de Sitter space.

Expressing D, and D, in terms of (7,7,%,p) is straight-
forward.® The convenient combinations of the homogeneous
solutions turn out to be'®

B,(A) = % = [(Ae" =)/ (A —FeN 1™,
B,(A) =b=[(Ape" + 1)/(Ay + €M ], (8.6)
By(A) = % = (le" —F)/(Aye” + 1).

For solutions independent of ~ and ¢ only the combination
B,B ;! can appear (in the poles and the row vectors M, )
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along with the redefinition A —Ae = *.

Choosing

G, = diag(e"*+? e~ ==+ ), (8.7)
for SU(2),

¥, = diag(e™,ee ~ ), (8.8)
with

h =z — 1 In(B,(A)B,(A)). (8.9)

(The criteria for specific choices of /4 are hermiticity con-
straints for G”%.) The generalization to SU(XN) is direct.
This formulation has been used extensively®!° to construct
instantons.

Case 2. Spherical coordinates: This can be very conve-
niently and fruitfully treated® as a scaling limit (z—z/a;
a— oo ) of the previous case showing how monopoles emerge
as limits of instanton sequences. But it is instructive to ex-
tract it directly from our general formalism. Let

o=y, w,=(z—-1)/(z+1), K=1, (8.10)

and

y=tan(d/2)e, z=(r+it), (8.11)

(0<7r< o0, — w0 <t< o). Then, normalizing the C.F.,
ds® = [dt? + dr* + r*(d9? + sin 29dg ?) ], (8.12)
the standard spherical line element.

One can easily express D,,D, in spherical coordinates.
Note that from (3.6) and (8.10)

p=(1+9)/(z+2) =@2rcos*(#/2))"",  (8.13)

which is static. This simplicity is lost after (6.1) leading to
%, and Y, of (6.4) and (6.5). [This is what we meant in
the comment following (6.9). Though (6.1) elucidates the
general structure, it is not always advisable to implement it
in constructing explicit solutions.] The combinations well
adapted for this case are'’

B,(A)=(a+c)/(a—c)=r[(A+3)/
(A=N1+1t,

B,(A)=(b+1)/(b-1)

=r[(Ay—1)/(Ay+ 1)1 +1it,
By(A) = @—e)/(b—1) = A=)/ Ay + 1),

These can be obtained also as scaling limits of (8.6). Choose,
for SU(2),

G, =diag(e,ee™") (r=14(z+72)),

(8.14)

1o = diag(e®,ee "), (8.15)
where
h =1z — }(B,(1) + B,(4)). (8.16)

This formulation has been used to construct monopoles® and
(quasi)periodic solutions.'®'' The combination (B, — B,)
along with 4 — Ae ~ “ can be used for static, axially symmet-
ric solutions. The roles of B, and B, in time-dependent solu-
tions, however, are of particular interest.

Cuase 3. Accelerated observer: In the Minkowski line ele-
ment, setting
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x, = a~ 'e** sinh ao,

x; = a~ 'e* cosh ao, (8.17)
one has
ds’ = —dx3 + dx} + dx? + dx}
= &%( —do* + dt?) + dx} +dx3. (8.18)

An accelerated observer'* along a trajectory ¢ = const with
a proper acceleration ae ~ “ has a proper time proportional
to o (e**a). Hence he will see solutions independent of o as
static. To study self-dual gauge fields from the point of view
of such an observer,'® making explicit the role of the observ-
er’s proper time, consider the Euclidean section obtained
through

Xo— —ixg, O—> —iO. (8.19)
Normalizing a to 1,

ds* = e**(do? + d{?) + dx% + dx3

=du’ + u* do® + dv* + vV dp? (8.20)
=&+t dzdz+ e+ dydy, (8.21)

where we have set

X3+ ixg = ue’ =&, x,+ix,=ve®=2¢. (8.22)
This corresponds to (3.6) with

o, =¢, w,=¢, k=0, (8.23)
with a corresponding choice of C.F. Now
a= — Ae20+I-y—n _ _ jo-io+®)
b= —Ae20+3+y—2D L (—_Av+u)e ", (8.24)
c= — A0 D = _ (Au+v)e .
Also with p = e'2C+2==0 =y /y,

D, =3, +Ap~ '3 +3i(1 —Ap~ 1A 3d,, (8.25)

D, =43, —Apd; + 1(1 + Ap)A d,,
for

A=0, a=0, b=¢é, c= —¢. (8.26)
Hence, for SU(2), choose

G, = diag(ef* TP ,ee ~ Pz + D), (8.27)

¥, = diag(e*,ee "), (8.28)
where

h=pz+ F (ba) (8.29)
with

e” =0 = o2 (8.30)

The relation of these coordinates with those of case 1 has
been given elsewhere.>'® Instanton and monopoles have
been studied.

Case 4. Cylindrical coordinates: This can be treated as a
scaling limit of case 3, permitting again the exaction of mon-
opoles as limits of instantons.® To extract it directly from our
formalism set

0,=¢, w,=z k=0. (8.31)
Suitably choosing the C.F. one has
C. Roiesnel and A. Chakrabarti 1649



ds* =dzdz + ¢ *7dy dy. (8.32)
For

X+ ixg=2, & =uve", (8.33)
one gets the standard form

ds® =dx} +dx: + dv* + vV dop>. (8.34)
Now
a= —Ae "%, b= —Av+Z c= — (Az4+v)e "

(8.35)

The combination

c/a+b= —Av+v/A+ (z+32), (8.36)

free from x, and ¢ can be used in the pole equations to con-
struct static axially symmetric monopoles.®’

Case 5. Gauge fields around cosmic strings: If instead of
(8.34) one takes'®

ds’ = dx} + dx} +dv* + B2’ dp? (0<B<1),

(8.37)

one gets the Euclidean section (x,— — ix,) of the metric of a
straight cosmic string of linear mass density

p=1i(1—B). (8.38)
It can be cast in the form"’

ds* =dzdz+ e *Vdydy (8.39)
where

V=pln@p), or e *=(p) * (8.40)
Setting

4oy _y-w =7 k=0, (8.41)

dy

one gets the link with our formalism. Multlple parallel
strings are obtained!’ by setting

y=3 ui{-CHGF- T},

I=1

(8.42)

where the mass density and the intersection with the 1-2
plane are given, for the / th string, by i, and C,, respectively.
Now

d“’ k=0.

—L= H (y CI ’ Wy, = 2,

I=1
A contmuous cloud of density can also be envisaged,'” and
one can choose a suitable interior solution. For thin strings
(8.40), (8.42) the metric is singular on the string axes.

In applying our formalism to construct self-dual gauge
fields in such a background (say that of a single string to
start with) the real problem, as always in the linear pair
approach, will be to fix the domains of the parameters con-
sistent with desirable regularity and boundary conditions.
Topological aspects should then be analyzed carefully. For
nonsingular solutions one can consider the exterior of a thick
string. Such solutions will be studied elsewhere. One should
note, however, that a well-defined self-dual gauge field (the
signature being Euclidean) has zero T,,. So it does not dis-
turb the gravitational background. So one has effectively a
solution of the total gravitational Yang-Mills system.

(8.43)
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Gauge field solutions in various other curved spaces are
known.® Here we just point out how the special case of paral-
lel strings fits into our formalism. De Sitter space was al-
ready mentioned in case 1. More generally, conformally flat
Robertson—Walker spaces can be considered in our frame-
work. One point should, however, be noted. Self-dual solu-
tions in four dimensions are formally independent of an
overall conformal factor in the metric. But the singularities
of the conformal factor, limiting the domain of the coordi-
nates, can have important consequences. It has been shown®
how, in case 1, a close study of the region 77— « restricts the
parameter « of (8.7) to integer values, for the gauge poten-
tials to be finite and free of branch cuts.

IX. REMARKS

In Ref. 1 the metric tensor depends, from the very begin-
ning, only on fwo coordinates. This is not suitable for our
purpose. The solution of Refs. 10 and 11 depend already on
three coordinates (¢,7,4). So we have started with a formal-
ism where all four coordinates can enter into play on an
equal footing. Then we have shown how to impose different
types of symmetry restrictions when desired. Thus we have
generalized the metric tensor in one direction. Then we have
derived the necessary restriction in another direction im-
posed by the integrability condition of the linear pair. This
leads us to locally conformally flat metrics given by (2.1)
and (3.6). Even for conformally flat metrics all choices of
coordinates cannot be directly implemented in linear pairs.
We have given the most general formalism possible. Such a
constraint leaves however a rich structure. It includes, for
example, all the cases of Sec. VIII. The B’s of (8.6) and
(8.14) played a basic role in the construction of certain
classes of aperiodic, periodic, and quasiperiodic instan-
tons.'®>!! They were, however, discovered in a groping fash-
ion, the homographic forms being found for the first time in
this context. Now we have the very satisfactory knowledge
that they arise from the invariance properties of our Liou-
ville fields. The fruitfulness of varied use of non-Cartesian
coordinates needs no new demonstration (see references to
our previous papers). Now we have the geometrical insight
of the unified basis relating them all. New possibilities have
been opened up.
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A graph theoretical method is proposed for the calculation of inner products in the Fock
spaces of parabose algebras. For this purpose, a new class of polynomials associated with finite
graphs is introduced. The obtained results can be generalized to the parafermi case.

1. INTRODUCTION

There have been suggestions for quantization proce-
dures that lead to particle statistics different from the usual
Bose and Fermi types. A particular example that has re-
ceived much interest is parastatistics.'~” The basic commuta-
tion relations (CRs) of parabose or parafermi operators are
not bilinear, but trilinear. The algebras are classified by a
number peN, the parabose or parafermi order. Green has
given a convenient decomposition of parabose and parafermi
operators into components that obey bilinear CRs (cf. Ref. 1
and the subsequent section).

The unusual trilinear CRs are sometimes inconvenient
in practical calculations. For the calculation of inner prod-
ucts in the Fock space, one could use the relation between
the creation and annihilation operators

aatat =atata, +afaa’

(1.1

to move the annihilation operators to the right until they act
upon the vacuum vector. This method works, but the formu-
las soon become untractable. Another relation was derived
in Ref. 7, Eq. (7.26), where the calculation of inner products
was reduced to a study of certain representations of the per-
mutation group. But this result does not provide explicit for-
mulas either.

In this paper we describe a very simple graph theoretical
algorithm for the calculation of inner products. In a first
step, one has to determine certain polynomials g, by a graph
theoretical method. The result is then given by

—a; apa, +26,,a;"

<<i1"'in][j1"'jn>) = E ga(P)ai,jca, (1.2)
OES"

where 1i,--i,)) is an n-particle state in which the modes

i, I, are occupied, p is the parabose order, and S, is the

symmetric group.

The outline is as follows. In Sec. II, we review some
basic properties of parabose algebras and fix our notation.
Furthermore, we describe a tensor space representation for
the creation operators of the Green’s decomposition. In Sec.
I11 we introduce a class of polynomials that are related to the
subgraphs of an arbitrary finite graph. These subgraph poly-
nomials have some interesting properties. Section IV gives
an application of these polynomials to the calculation of cer-
tain coefficients that appear in the tensor space representa-
tions. Then, we describe our method for the calculation of

* Work supported by Studienstiftung des deutschen Volkes.
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inner products in the Fock space. Here the subgraph polyno-
mials enter again. Finally, we add a few remarks concerning
the parafermi case.

Il. PARABOSE ALGEBRAS, THE GREEN’S
DECOMPOSITION, AND A TENSOR SPACE
REPRESENTATION

In this section, we fix our notation and give a short re-
view of some properties of parabose algebras. Furthermore,
we describe the Green’s decomposition and the commuta-
tion relations of the Green’s components. For simplicity, we
consider systems with a finite number of degrees of freedom.
Our considerations apply equally well to the case of para-
fermi algebras. Since the changes are mainly signs that have
to be removed from the formulas, we concentrate on the
parabose case and mention the necessary changes in Sec. IV.

Let (a;*,a,),_, _x be a set of parabose creation and
annihilation operators satisfying the following trilinear com-
mutation relations:

[ak9{a1’am}] =O: (2.1)
[ak,{a,+ at}] =26 ma" + 264a), (2.2)
[akr{al+ ’am}] = 25k1am' (2.3)

Denote the algebra that is spanned by the operators a;* and
a; by Ul. Here, Ul acts on a Fock space &, with vacuum 1))
that is annihilated by the a;. The Fock space is spanned by
vectors of the form

1)) =iy ++i,)): = a;t - -a IQ)),

i:{ly-"’n}_’{lv--,R }- (24)
If peN, the inner product {{-I-}) is positive definite.®

A convenient representation for U is given by the
Green’s decomposition'*

2 2
a;: = Z Aoy G = 2 ag,

a=1 a=1

2.5)

where the Green’s components obey the anomalous CRs
[@iastia ] = 8y

{@iar25} =0, {an.a3} =0, for a#p.
If we define

[aia ’aja ] = O’

(2.6)
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1, if A=B8, [1, if A=23B,
€ani = [ _1, if4#B = lo, ifaxn @7
the CRs of the Green’s components read
83 = €ap8jp8ia;>
A = €051y + 6,01 (2.8)

Let B be the algebra that is spanned by thea,t anda,,. B acts
on a Fock space § with vacuum I)) ). Here §, is spanned
by the vectors

™))=L 0" =ak, -

Obviously, UCB and F, CFy-

Finally, we define the subalgebras U* C1l and 8+ C B
that are spanned by the creation operators {a;* } and {a;}
respectively.

Now, we give explicit representations for the subalge-
brasll* and 8* on a tensor space. Let T'be an R-dimension-

* 1)), (2.9)

a; inCy

.....

TP = ea T (2.10)
i=1
the vector space with basis (€,; ) c(1,..r}, ae(1,..p}
Furthermore, define the tensor spaces
T®: =g T, TPR:=¢ o T” (2.11)
neN i= 1 neN i=1
with basis
)= liy==+i,): =e¢;,® ""®¢,
]
|Q):=1le @ T:=C,
i=1
[ =Tirirfi=en @ ®e ., (2.12)

0
[:=1e e T%:=C,
i=1
respectively. For these tensor spaces, we assume the canoni-
cal inner product
G|y =8, andliTjPY: =644 (2.13)
We define a representation of 8% on 7" as in Ref. 6 by

a0 =Tiy. (2.14)
a: Tt 'f:Z _ ’20( ﬁ €, ')

X | jfee- ]h 1]5’-':1' iy,
It is a straightforward calculation to check the CRs
Uz Of = €apyf A - (2.15)

A general formula for tensors of this kind is given by

aj.,aJ0Q =

where

v(a,a )J_i"oaz (2.16)
S

(1%00) 1 = i7. (2.17)
Here, S, is the permutation group of the set {1,...,1},
v(o,a) isasign + 1, v(1,a) = 1, and if &’ is a permutation
that differs from o by a transposition of the kth and
(k + 1)th element, then
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v(0\a) =€,,, , (2.18)

that is, the exchange of neighboring indices / and j with a # 8
generates a minus sign.

We obtain a representation of 1* on T*® if we sum
over the parabose index. For [¥JeT #®, define

a;I\l{Z; == ag] a,II\Vz.

We note that we do not have a representation for the a,, on
TR If we define b,, to be the adjoint operator of a;} with
respect to the inner product {"[-3, the a;} and b,,, in gen-
eral, do not satisfy the relation

biaaj = eaﬂ 'jB bxa + 61«1}3
We define a projection

v(o,a),

(2.19)

(2.20)

n
L Py i),

such that IT “forgets” parabose indices, and a map

LT LT®, T (2.21)

PFa =T, af ---a IQ))o——»a,‘,,'---a,.ja"IQ}. (2.22)

Since ¥, CFy, We may regard @ as a map ¢: &, - T *®,
too. If ¢ is the injection of &, into ¥y, We may summarize the
spaces and maps in the following diagram:

%u"%m"’T(pm
{T-»ny @»y I3 49 (2.23)

It is obvious that Wick’s theorem can be generalized to the
case of the Green’s decomposition of parabose operators. If
it is assumed that a certain set of operators has only C-num-
ber commutators and every operator 4 may be decomposed
in a creation part A ) and an annihilation part 4 =, then a
normal product :...: may be defined such that the “ + ” com-
ponents stand to the left of the “ — ** components. For Bose
operators there is no sign rule, and for Fermi operators an
additional minus sign has to be introduced for every ex-
change of two Fermi operators. In the parabose case, the sign
rule is slightly more complicated since here an additional
minus sign is needed only if two operators with different
parabose indices are exchanged. We conclude that the vacu-
um expectation value of an odd number of such operators
vanishes and that for an even number of operators the fol-
lowing formula is valid:

T (R) with states

QI Ay, 1Q))
= Y NediaAja A Aja, > (2.24)
pairings " T T M
where
A4 = ((QI4,4,1Q)), 7,, =v(0a),
| —
and
1 2 - 2n—1 2n
o:={. , . .1 (2.25)
Lo g oot 1, Jn

The only nonvanishing contraction of the a,, and a;} is
aliigjﬁ = ((Qlalaajﬁ IQ)) = ((laIJB>) - la_lB (2 26)

The maps ¢, @, and II are linear, but ¢ and II are, in

Dirk Graudenz 1653



general, not isometries. We want to find out the metrical
relations between the various spaces. For this purpose, we
now develop the tools for the calculation of the map ITogos,

1l. SUBGRAPH POLYNOMIALS

This section is a short excursion into the realm of graph
theory. It will provide us with a class of polynomials that
arises if the properties of the maps ¢, ¢, and IT in (2.23) are
studied. But these polynomials are perhaps also interesting
from a graph theoretical point‘of view.

We assign to each graph G a polynomial
Jo(P.9)eK [p,q], where K is an arbitrary field. To be defi-
nite, we will work with K = C. Here, f; (p,q) will be called a
subgraph polynomial.

An undirected graph G = (V(G), E(G)) is given by a
finite set V(G) of vertices and a set E(G)
C {{a,b}|a,be¥(G)} of edges.®

We define $G: = $E(G) to be the number of edges of G
and bG to be the number of components of G, where a vertex
aeV(G) that is not an element of any edge of G is counted as
a single component.

A graph H is called a subgraph of G if V(H) = V(G)
and E(H)CE(G). We write H<G. Any graph G has 2*¢
subgraphs.

We define

fopg):= Y pig*”.

HG

a.1

Example: The subgraph polynomial of the graph de-
fined in Fig. 1 is

fo(p.g) =p* +490° + (& +647)P* + (¢* + 3¢°)p, (3.2)

as the interested reader may check by drawing all subgraphs
and applying definition (3.1).

Now we state some properties of subgraph polynomials
that simplify their calculation.

A. Factorization property
A graph G splits into G, and G,, G = G,UG,, if
V(G) = V(G))UV(G,), E(G)=E(G,)VE(G,),

(3.3)
where “U” denotes the disjoint union. Then
#G = #Gl + #G2, bG = bGl + bGz- (3.4)
Since
Z f(H)= 2 f(H|UH2)’ (3.5)
H<G,UG, H,<G,
H,<G,
we obtain

34 4
G := E
1 2

FIG. 1. A connected and one-edge reducible graph.
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— H, H, #H, H.
fG,UG,(p9q)»— z pl’ i+ b zq" 1+ #H,
H(<G,
H)KG,

=fo, (P.0) S5, (D.9). (3.6)

B. One-edge reducible graphs

A graph G s called one-edge reducible, if the number of
components increases (by one) if an edge k = {a,b}eE(G),
say, is removed from G If keE(G) and
G' = (V(G),E(G)\{k}), we write G = G' ® k and say that
G is k reducible if G is reduced if k is removed. Then

#(G' ok)=H#G' +1, b(G'@k)=>bG' —1. (3.7)
The set of subgraphs H<G' @ k is divided into two disjoint
classes: Those subgraphs that contain &k and those that do
not. Therefore,

> fuh= 3 fi+ Y f(Hek).

HLG' ok HLG'’ HLG’

IfH<G', kisnotanedgeof G'and G' & kis kreducible, then

(3.8)

#(Hok)=4$H+ 1, b(Hok)=bpH—1. (3.9)
Therefore
foor (@) = Y PR+ ¥ prHelghtiel
H<G’ HLG’
=fG’(p’q) + Z pr—-lq#H+l
H<G'
= (1+49/p)fs (P.9)
(if G'®k is k reducible). (3.10)

We note that f; (p, — p) = 0 if G is one-edge reducible.

C. Isomorpbhic graphs

Two graphs are called isomorphic (G, =G,) if they dif-
fer only in the numbering of their vertices. Then,

Je, (P9) =16, (p,9). (3.11)

A general strategy for the calculation of subgraph poly-
nomials is to remove all edges k from a graph G for which G
is k reducible. If the number of these edges is ¢, this contrib-
utes a factor of (1 + g/p). We are then left with a graph
G’ = G,U...UG, that splits into d irreducible and connect-
ed graphs G;. Their subgraph polynomials will be easier to
calculate compared with f; (p,q). Then,

c d
folpg) = (1 + ’%) I1 f6.(.0)-

i=1

(3.12)

A graph G may have many isomorphic subgraphs. Then the
third of the above mentioned properties is helpful.

We apply (3.12) to the graph G defined in Fig. 1. Here,
Gis {1,2} reducible. Therefore

G=G'ek, G'=v .=(v YU, (3.13)
SO
Je(pg) = (1 4+ q/p)f v (0.9) [ (pg). (3.14)

Now
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v @@ =" +3p+7 +38)p, f(pg)=p. (3.15)
Therefore,

fog) = (1 +4/p)(p* +3gp + ¢ + 3¢ )p-p,
which'is the result (3.2) already mentioned above.

Now we describe an application of subgraph polynomi-
als. Let V(G) ={1,...,n} and

E = — (b5 +1). (3.17)
For a:V(G) -{1,...,p} and a graph G = (V(G),E(G)), let

(3.16)

Ga):= E, (3.18)
V(G {a.bJeL(G) “
=(—1¥ H (96,0, + 1) (3.19)
{a,b}cE(G)
and
P P
g(pg):= Y - Y v(Ga). (3.20)

a; =1 a,=1

We want to calculate g (p,q). First, we multiply all factors
(g8, + 1) in (3.19) resulting in a sum of 2*° terms. Each of
these terms is related to a subgraph H<G in the sense that a

factor ¢é, is represented by an edge in H. So,

v(Ga)=(—D*¥ ¥ ¢ Bum-  (321)
HG {a,b}cE(H)
Now the sums in (3.20) may be calculated:
i P
g =(—D¥ ¥ - ¥ ¥ ¢
a, =1 a,=1 HSG
X S a,: (3.22)
{a,b}eE(H)
For fixed H the sum over the a’s of the term
(3.23)

I, e
{a,b}eE(H)

gives a factor p*¥ since those a, that belong to a certain
component of H are constrained by the Kronecker §’s to the
same value. Finally, we arrive at

2Py = (—1D* Y P = (- D*.(pg). (3.24)
H<G

In the sequel, we need a special class of graphs that are relat-
ed to the symmetric group. Let o€S,, be a permutation and
F,:={(ij)]i>jho~ (i) <o~ "(j)} (3.25)

the set of inversions of o~ 1. Then, with each o, we may asso-
ciate a graph G, with

V(G,) =A{1,.,n}, E(G,)={{ij}(ij)eF,}. (3.26)
For example, if

(1t 2 3 4 _,_(1234)
”"(2 4 3 1)’ o=l 1 3 a0 G2
then

F,={(2,1),(3,1),(4,1),(43)} (3.28)

and G, is the graph from Fig. 1.
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IV. APPLICATION OF SUBGRAPH POLYNOMIALS TO
THE GREEN'S DECOMPOSITION

Now we return to the tensor space representations. We
calculate the map I[Togo, if the result is expanded in terms of
canonical basis vectors in 7 ®, Then, we use this expansion
for the calculation of inner products in the Fock space ;.

By using (2.16) and (2.19) we obtain

Hai.*- . "aiflﬂj = H zp: .es az:"‘ a; U(o-,a)IiaOg'}

a =1

4.1)
=Y 8, (p)|ica), (4.2)
€S,
where we have defined
P P
&)=Y - ¥ vioa). (4.3)
a, =1 a,=1

Note that we may obtain v(o,a) in the following way. We
start with the sequence «,..@, and move these symbols
around until we reach the sequence a,;, ...®,(,, - For each
exchange of two different indices, we change sign, starting
with 1, and finally obtain v(o,a). Now the symbol e, stands
in the o~ ' (i) th position in the final sequence. Two symbols
a; and a; have to be exchanged, if /> j and position (/) < po-
sition (j), that is 7 '({) <o~! (j), so (ij)eF,. This ex-
change results in a factor €,(;,(;,- So, we get the general
formula

voa)= [[ €ue,= €oa,r (4.4)
(ij)eF, ! {a,b}eE(G,)
Now, we use (3.17), where we set ¢ = — 2, such that
E_s = €,5. Then, (3.18) and (3.24) imply
v(oa) =v(G,,a),
£, (p) =g (P) = (— D*f; (p,—2) (4.5)

= sgn(a)fs, (P, — 2).

A simple formulation is due to Kastening:® Given the per-
mutation o, multiply the terms (26,,,;, — 1) where each
factor stands for an inversion of o~ *. Then sum over the
parabose indices to obtain g,,.

Now that we know the coeflicients of the expansion
(4.2), we can calculate inner products in the Fock space.
Applying Wick’s theorem, we obtain

(G2 = (G0, P+, Py )

= <<Qlainan .. -ai|a| al:;- o .aJ}nIQ))

= z v(o.,Pa,  a*
o€s, L

N +
hay Jail)Bo“) ’ f"nanajafn)ﬁa(n)

= 3 v(o,8){i*[j%0} by (2.13)
oS,

= §Tajs, a7 19} by (2.16)

= {Tei®))) (4.6)

and
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(i i o)) =0 if m#n. (47)
By linearity, we obtain for arbitrary I¥) )€y,
iy i, WYy = iy 1, “TpI¥)). (4.8)
A short calculation yields for all [¥)eT #%’,
ﬁ: e f: (" [} = (| IMTY3. (4.9)
1 a,=1

o, =

The inner product in ¥, is calculated in the following way:

(G, 1)) = T (ELIY))

= S {"lpod¥)) by (4.8)

= (i|TlogoI¥)) by (4.9), (4.10)

such that
iy 28,0y j, ) ) = iy oo, [Togodljy -+ +j, ) by (4.10)

= (iy+i,| S g, (p)|joo) by (4.1)
o€S,

= z ga(p)ai‘j_oa' (4.11)
oeS,
Equation (4.10) shows how the metrical properties of the
tensor spaces are related.
Finally, we prove that [Togo, is an injective map on ;.
We calculate the kernel of this map. Let I1¥))eg, with
[Mogo¥)) = 0. For every Ii;---i,)), we obtain using
(4.10)
i, W)Y = iy i, | Tlo@oddW) ) = (i +1,|0) = 0.
(4.12)
Since the Ii,...7, ) ) span &, and ((-I-)) is not degenerate,
we conclude that I¥)) = 0. Therefore, [1ogo: is injective.
We conclude with a remark concerning the parafermi
case. If €5 is defined as

if 4=238,

1
b 4.13
€ant [ 1, if A#B, (4.13)
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in contrast to (2.7), the formulas of Sec. II hold for the
parafermi case. Then, g, (p) in (4.5) is changed to

ga(p) =fG¢,(p’ - 2)9
and the results (4.10), (4.11), and (4.12) still hold.

(4.14)

V. CONCLUSIONS

We have derived a graph theoretical method for the cal-
culation of inner products in the Fock space of parabose and
parafermi algebras. Essential for this method is the introduc-
tion of subgraph polynomials that are associated with per-
mutations.

We think that there are many additional interesting
questions. Since the subgraph polynomials are intimately re-
lated to coefficients that arise in the representation of an
algebra, they should possess a rich structure of algebraic
properties. Furthermore, they are related to graph theory.
An interesting question would be whether these polynomials
fix a graph up to isomorphisms. A generalization of the con-
tents of this paper to an infinite number of degrees of free-
dom (field theory) should be straightforward.
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The simple harmonic 2-degree of freedom (dof) oscillator with the potential
V=}[(1+rsinet)q; + (1 — rsin et)g5 + 2r cos €tg, g, ] is considered. It is shown that a
coupling parameter k ~ /€ determines the behavior of the system after a loop 0<7<2#7/€ in
parameter space. Somewhat unexpected mode conversion and phase corrections occur. An

optical model is outlined.

1. INTRODUCTION

Consider the slowly varying 2}-degree of freedom (dof)
oscillator:

=i(p} +p3), V=1i(aq} + cq; +2bg,q,),

a=1+4rsin(et), c=1—rsin(et), b=rcos(et).

(1.1)

The frequencies of the “frozen” (¢ = const) systems are con-
stant,

wl,=1+r (1.2)
and the angle, say between the @, mode and the ¢, axis, is
d=e€t/2 — /4. (1.3)

As the slow time variable s = €t varies between zero and
27, the parameters loop around the degeneracy point corre-
sponding to r = 0. For small, but fixed r, the following is
conventional wisdom among those working in the subjects of
the Berry phase’ and Hannay angles:? as € -0, the actions I
are adiabatic invariants and the angle variables 6, evolve just
with the dynamical phases 8, = 6,(0) + §; @; dt (in other
words, Berry’s one-form vanishes). However, as a result of
(1.3), after the circuit the phases are in opposition to those of
the oscillator in which g, b, ¢ are maintained with their origi-
nal values.>*

On the other hand, for ¢ fixed and »—0 (approach to
resonance) the limit system is the isotropic oscillator, with
constant parameters a = ¢ = 1, b = 0, for which no such op-
position of phase results. The aim of this article is merely to
indicate that quite different types of behavior may occur de-
pending on a coupling parameter k~r/€. Actually, this
would be no surprise to experts in linear mode conversion.>¢

Il. “SCISSORED” EQUATIONS OF MOTION IN ACTION
ANGLE VARIABLES

Let a time-dependent canonical transformation be ap-
plied to (p,.p,,9,;,9, ) space via

(pl’pz)tzR(Pl’Pz)ts V(QI’qz)"_—R(Ql’Qz)‘:
_ cos & —sind))
- (sin ¢ cos¢ 21

where ¢ = ¢(¢) is the angle between the », mode and the g,
axis. Furthermore, let
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Y=PAG, X =20,
L =}(X}+7Y?, 6 =arctan(X,/Y)).
The Hamiltonian H = T+ V for (1.1) becomes’
342)
+
ar P
where p;, g; are functions of 6,, 6,, I,, I,, t via (2.1) and

(2.2). After a long, but straightforward calculation one ob-
tains

(2.2)
K=wI, +o,I, — (

K=a,I, +o,I, + 21 I, sin(8, )cos(6,)
[

1

+ 22 1, sin (6,)c08(8,) + $yT. T,

,
X [M sin(6, — 6,)
W, 0,
a) —_—
+ 2 7% G, + 02)]. (2.3)

Formula (2.3) holds for any time-dependent variations
of a, b, ¢ [yielding the corrcsponding functions ;(¢) and
#(2)]. In our case @; =0 and $=e¢/2, so that

7
["”’“ sin(9, — 0,)

K=Jt4+r, +1—rL, +—

(1 2)1/4
,/I(Tr ZV)W n(01+92)]- (24)

It is customary in resonance problems to introduce the
slowly varying combination of phases as one of the dynamic
variables and we proceed accordingly. Let

a=60,—-6,, A=60,+0,,
W=I -5, 2I=1 +1,,
so that

K=IN1+r+ 1= +JT+r—J1=71)
\/712(\/1_-!-'+\/—

(1 2)1/4

2 )sm(a)
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+ &£ =77 (__.._____.__._Vl""'_ ‘11_") sin(1). (2.5)
2 ( 1 —r 2) 1/4
For r<l, e<€1, the “scissored” Hamiltonian K. ob-
tained by dropping the last term in (2.5) gives a good ap-
proximation to the motion.® For K, I is a constant of mo-
tion and one is led to the one-degree-of-freedom system with
the Hamiltonian

MUa) =JT+r—J1—7r) — (e/2)I* = T?
X [T+ r+J1=r)/1 = r?)“lsin(a).
(2.6)

In the next section we show that J(¢), a(¢) can be ob-
tained in closed form just using elementary functions. Note
that the approximate dynamics for A is then governed by

A=GT+r+VT=r — () [INTT=T*(1) ]
X[WT+r+JT=r)y/(1 —r*)"*]sin a(t).

Now, since 8, =i(a + 1), 8, = (41 — a), it follows
that

0, = l+r—-—% IIZ—{IZ “1(_1r+2“)11:rsin(a),
JI7= —r

0, g\ll—-—r—% Ilz+{,2 “1(_1—r+2“)11/j~rsin(a).
JIP— —r

2.7)

[The true solutions are solutions of (2.7) with an O(re),
zero-average, fast periodic function added.’® ] |

i\/1+r+\/1—r‘/72—_-1—2

J=
:t 2 (l__r2)1/4

In analogy with the Hannay angles,? we define

f 11 - 2n/€
Aeli—-i 1—r4yl+r I-J sin a(z)dt,
4 (1—-r)"* b JIT=J?
1L, 27/ €
Agzi_i“l_r'*' 1+r I+J sin a(t)dt.
4 (1—=r3 b JIZ=J?
2.8)

Using the energy parameter M in (2.6) we obtain

1 (*M-JoT+r—Ji=r)

AOI = dt,
2 Jo I+ J(1)

2/ €

A02=if M—JOWI+r=VI=7) 4 (58
2 Jo I—J)

We now show that J(#) can be computed in closed form.

li. CLOSED FORM SOLUTION OF THE REDUCED
SYSTEM: PHASE PORTRAIT

The equations of motion for (2.6) are

L __cosa, (3.1a)

— 2y

J=§ﬁz—:fz“g’+“—’

. € J
=Itr—yl—r+——

a +r r+2 7

x(“1+’+"1_')sina. (3.1b)

(1 —r 2) 1/4
From (3.1a) and (2.6) we obtain

4(1 _r2)l/2

X 1—
\/ WTFr+yT—r2e1*-J?

L M JTF7r=T=P ]

where the + indicates the sign of cos « in the corresponding region. This expression simplifies to

J= i\/i( LoD o

4 (1_r2)l/2

or

J=+V—(@J*+bJ+0),
o= (TTr— '_l-r)2+i W14 r+y1—r)?

4 (1___’.2)1/2
b= —2M1+r—1-—"r),
M ENT+r+T1—1

)

— 3-2
¢ 4 (1 —_r 2) 172 ( )
Equations (3.2) are readily integrated as
arccos[1 —2((J—=J ~ Y/ (It =T )]
= + Jar + const, (3.3)

where J * > J ~ are the roots of aJ? 4 bJ 4 ¢ = 0. Again,
we stress that the plus sign is taken for cos a > 0. Before
going further is it perhaps best to sketch the phase portraits
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IPP_J)—[M-JT+r—J1=1]?

r
of (2.6) in ae( — w0,»), Je( — I,I). The equilibrium
points for (3.1) are

Ci:a=a/2, J= —(k/N1+Ek?)],

(3.4)
C,: a=3n/2, J=(k/N1+k*I,
where
k=2(\/1+r—\/l—r) (1—r2)‘/‘~£+0(i).
Trayi=r) € e \e
(3.5)

These equilibria are centers since in both cases the trace
of the Jacobian matrix is zero, while the determinant is equal
to

2
oo & (\'1+’+"21V"2") (1+k?). (3.6)
4 (1-=r*%
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Although there are no saddles, the points J= 4 I,
a = nrgive rise to the separatrices C ¥, C ~, asindicated in
Fig. 1. Coordinates of points P, Q are given by

2
P=(a=-3L2’1,J=1k = 1),

k241

T l—kz)
=(a=ZJ=1I

Q (a 2 14 k2

For very large k the islands in Fig. 1 are squeezed to a
very thin region [Fig. 2(a)], whereas for k—0 the ribbon
region is squeezed into a polygonal, as indicated in Fig. 2(b)
and (c).

IV. LIMITS k=0 AND k- »

For k =0 (r—-0, € fixed) we obtain, in the limit, a col-
lection of cells separated by a polygonal line [Fig. 2(c)].
Take, for instance, 0 < a < 7. We obtain

J(t) = T? = (M /€)? sin(et + const),

— (M /e)
JIZZ 7= (M /&) ]sin’ (et + const)
(M<0) 4.1

for the closed trajectories in the cell. We calculate (2.8').
Here

sin a(?) =

2n/€
2Jo  I4I?— (M/e)?sin(et)
Changing variables to z = tan(et /2) we obtain
mm»=ﬂf dz o
el)—w 24 2/1— (M/eD)? +1
4.2)

by a simple residue calculation. Note that the calculation
(4.2') is exact since the last term in (2.5) vanishes for » = 0.

Let us now compute A8, , along the polygonal lines
(M = 0). The speed along the horizontal segments is infi-
nite, so that we may compute only over the vertical seg-

P o= (3172, kz—l 1)

k2il

n/2 " 3u/2 2n

Cy Q=(n/2, 1=k 1)

1+k

N

FIG. 1. Phase portrait of the reduced system (sketch).
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(a) ®)

FIG. 2. Limiting phase portraits. (a)
k— w0, (b) k-0, and (¢) k=0.

ments. The result (A8, ,) = = is valid for all values of M, so
that it carries over to M = 0.

We now fix r and let €0 (the adiabatic limit, without
resonance). In the overwhelmingly dominating ribbon re-
gion, we can safely approximate J~const for trajectories
sufficiently bounded away from the limiting lines J= + I.
One can also approximate @ = {1 — r — {1 — 7. Changing
variables to s = e we obtain

A 1 J1+r=Jy1=7r I—-1J,
( l)xeog_f (1——"2)]/4 I+Jo

21 f {
X lim sin(( 1+r—yl—r s)ds=0.
-0 Jo €
(4.3)
What happens on the orbits trapped in the infinitesimal-
ly thin islands? It is easy to compute A6, and AG, for the
equilibrium points (Fig. 1). For instance, by inserting

Cy:a=3n/2,J=kI/\1+ k? into (2.8) we obtain

pg = TNTFr+ T [1—kNTHE? 2
2 a-m* Liyknireel

A6 =£\/1+r+\/1—r 1+k/J1+&2 12
2= (1—r2) kTR .

(4.4)
Thus

lim A6, (C,) =0, 1imA6;(C,) = . (4.5)

Therefore, the main conclusion of the paper is the fol-
lowing.

All intermediary values between (4.2’) and (4.5) will oc-
cur as the coupling parameter k ranges in (0, ) Further-
more, the action variables may vary considerably, as depicted
in Figs. 1 and 2.

Detailed predictions along more general trajectories
will not be done here (although it is not a very difficult calcu-
lation). This study would be useful for comparison with real
experiments.
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FIG. 3. (a) mechanical analog and (b) optical analog.

V. AN OPTICAL MODEL

The following comments are due to Chiao.°

System (1.1)—(1.3) represents the mechanical system
consisting of a two-dimensional anisotropic simple harmon-
ic oscillator (2D-SHO), fixed to a “box” on a table that is
slowly rotated through 180° around the vertical axis. Now,
the elliptical polarization of light is clearly an analog of the
mechanical motion of the 2D-SHO; in this optical analog,
the major axis of the ellipse of polarization is slowly rotated
around an axis parallel to the direction of propagation (Fig.
3).

In the adiabatic limit of infinitesimally small rate of ro-
tation, after a 180° rotation there is a sign change in the am-
plitude of the light (this sign change is a special case of the
Pancharatnam’s phase'! ). To study the deviation from adia-
baticity, the following experiment could be tried (Fig. 4).

A Mach-Zehnder interferometer has two stacks of po-
laroid sheets inserted into its two arms. Let these sheets be
ideal and in order to keep the intensities balanced, let there
be an equal number of sheets in both arms. To approach the
adiabatic limit, let the number of sheets be large. In one arm,
the polarization axis is forced by the sheets to slowly rotate
through 180°. This is done by arranging the angle between
adjacent sheets to be small, but of constant sign. In the other
arm the polarization is forced by the sheets to alternate back
and forth, so that the net rotation is 0°. This is done by ar-
ranging the angle between adjacent sheets to be the same as
in the first stalk, but of an alternating sign. The optical path
lengths through the two stalks are equal by arrangement; the
output intensities are also equal.

In the adiabatic limit, there is a sign change between the
two arms of the interferometer, so that the light would come
out in the unexpected exit port, as indicated in Fig. 4. How-
ever, if the eccentricity of the polarization ellipse is small
enough (compared with the number of polaroid sheets),
then light will come out from both ports.

In principle, an elaboration of this article could predict
the rate between the two outcomes. A certain amount of
statistics may be necessary because of the dependency on
initial phases. We also remark that it seems worthwhile to
study the quantum mechanical version of (1.1)-(1.3).

Chiao'° also pointed out that there may be other phys-
ical realizations of (1.1)-(1.3), e.g., optical fibers with a
graded refractive index'? and microwave waveguides.
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FIG. 4. A gedanken experiment.
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The linearized gauge field propagator in an inhomogeneous medium
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In an inhomogeneous medium with z = k!, the linearized gauge field propagator is presented
in terms of spherical harmonics for the Coulomb gauge. Explicit expressions for the propagator
are given in the case of the MIT bag for both the Coulomb and Lorentz gauges. Gauge
invariance is shown explicitly for the one gluon interaction in the MIT bag. This work
supplements and corrects the earlier work by Bickebéller, Goldflam, and Wilets [J. Math.

Phys. 26, 1810 (1985)].

I. INTRODUCTION

The linearized gauge field propagator of quantum chro-
modynamics is identical to the Maxwell Green’s function of
electrodynamics. It is the propagator that is used to calculate
one gluon exchange matrix elements. In chromodielectric
soliton models of QCD,' the propagator must be calculated
in an inhomogeneous chromodielectric medium with a di-
electric function x(r) and magnetic susceptibility u = 1/x,
in units where ¢ = 1. The MIT bag model is an important
special case of chromodielectric models. There are many
other applications of Maxwell propagators in inhomogen-
eous media and we hope that this paper will be useful to
workers in various fields.

Construction of the Maxwell propagator in terms of
vector spherical harmonics has been fraught with difficul-
ties. Even in the case of homogeneous media (x = 1), the
expansion was not formulated correctly until 1979 when
Johnson, Howard, and Dudley? solved the problem. Bicke-
béller, Goldflam, and Wilets®* (BGW) presented a formula-
tion for the general inhomogeneous «(r). Their work, how-
ever, contains an error in the definition of the transverse
current. We show here how that error can be simply recti-
fied, so that the propagator can be calculated correctly utiliz-
ing their results.

The present authors discovered the error by noting that
for the MIT bag, x = (R — r), the appropriate boundary
conditons could not be satisfied for the electric (TM)
modes. The gluon field in the MIT bag has been studied by
several authors,*® but in Refs. 4 and 5 it is studied only for
special transitions; no general propagator is given. In Ref. 6 a
propagator in Feynman gauge is proffered, but we find that
it does not satisfy the boundary condition r X B = 0 (see the
Appendix). Here we give the general propagator in a Cou-
lomb gauge and in a Lorentz gauge, and gauge invariance is
shown explicitly in one gluon interaction.

The three-vector current can always be decomposed
into a transverse and a longitudinal component, although
this is not unique: One can always add to one and subtract
from the other a term of the form V¢, where V?¢ = 0. There
is yet a different problem here. The complement of the trans-
verse current that is required in medium is not necessarily
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longitudinal. We do not have a separation into transverse
and longitudinal currents.

We present below the correct definition of the transverse
current J,, for a general dielectric x(r) and the transverse
delta function &, (r,r’) that projects J onto J,. By operating
on the BGW propagator from the right with ,,, one can
construct the proper propagator. Complete results are given
for the case of a spherically symmetric dielectric function
and the special case of the MIT bag.

ll. THE COULOMB GAUGE IN MEDIUM

The medium is assumed to be color neutral so that the
propagator is diagonal in the color indices. In what follows,
we will drop reference to color.

Maxwell’s equations, withc = 1 and 4 = «™', are given
by

d*x(r)[d,4, —3d,4,] =J,. 2.1)
We work in the Coulomb gauge defined by

VexA = 0. (2.2)

The v = 0 component of Eq. (2.1) yields

— VieVA, = Jo(r,t). 2.3)

The time-time component of the Green’s function, G %, de-
fined by

Ay(r,t) = J- d3r GO(r,r')J,(r',e), 2.4)
satisfies the equation
— Ve VG P(r,r) =8 (r—r).

2.5)

Note that G ® is instantaneous. :
Consideration of the v =i components of Eq. (2.1)

leads to

k3A — VKA + VX (kAXVInk) =J — kV §,4,=1,.

(2.6)

The transverse current defined by (2.6) can be expressed in
terms of J using the time—time Green’s function:

3, (e,t) =J(r,t) — K(l‘)Vf d3r GP(r,r')ad,Jy(r',1).
2.7)
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Using current conservation, d,J, + V*J = 0, and partial in-
tegration, we obtain

J (r,t) =J(r,t) — K(r)Vf d3 (VGO(r,x)»J(r',1).
(2.8)

1t is clear that J, is indeed transverse since, using (2.5), we
find

VI, =VJ + jd3H(V’63(r —r))J(r',e)

=VJ—-VJ=0. 2.9)
Note that J — J, is not necessarily longitudinal since

VX(J—J,) = (Vk) XVJ d3r(V'G®ar,r))»J (',
(2.10)

does not vanish indentically for « not a constant.
. We now define the transverse vector delta function
d, (r,r') by

89 (r,y') =893 (r —r') —k(r)d' 3G ®(r,r'); (2.11)
we define the second part of the right-hand side as

Uiry') =3'3G%(r,r').

The homogeneous case ¥ = 1 is of special interest. Since
G, = 1/4x|r — r'| we find

1

. 2.12
4rrjr — 1| (212)

b (rr') =8%8%(r —r') — 3797
More on this in the next section.
Note that §,, is a projection operator onto the space of
transverse vectors. Specifically, for any transverse vector V,,
where V-V, = 0, we have

fdar’ 8, (e YVi(r') = Vi(r). (2.13)

For general x, 87. does not have this property. In particular,
B8,y =3, (2.14)
3,18, =8,. (2.14b)

Here and below there are implicit integrations.

Let us Fourier transform the time dependence of J(r,z)
and A(r,?) toJ(r,w) and A(r,®), and let « be time-indepen-
dent. The Green’s function corresponding to Eq. (2.6) satis-
fies

— [V? + 0 + VX (VIn k) X ]6G, (r,r') =8, (r,),
(2.15)

where G-G ;. Here we indicate explicitly the x<-dependence

of G,. “

. BGW3erroneously solved Eq. (2.15) with 8, instead of

Oux

—[V?+&®+VX(Vink) X ]Kamw (ry') = 3,1 (r,r").
(2.16)

If we operate on Eq. (2.16) on the right by 3,,‘ and use
Eq. (2.14b), we find that this

> < -~
Gpow 'O =G,

(2.17)
satisfies the Green’s function equation (2.15), or, alterna-
tively,
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A=G.J = Gygy 5,J. (2.18)
The interaction between two currents, J, and J,, is
—JA, = — 3G, (2.19)

lIl. CONSTRUCTION OF PROPAGATORS

The time-independent equation for the scalar Green’s
function G(r,r')=G®(r,r) is

Ve(r)VG(r,r') = — &(r—r').
It can be solved® to yield

(3.1)

1 1
Grr')=C,p — o (r )Y, (Q)
r. ; ! Ve (rD)

1 , 1
X _n‘lz'm’(r> )Yl*'m'(ﬂ> )
r, Jr(r)

EC'aa'u'it"m’(r< )v7m(r> )Yl'm’(;< )Yll.:n(?> ),

3.2)
where j,n satisfy the equations
d? l(1+1))
—— )60
I( FER S
+ Wi (r) <Im|YLM|I'm'>}
x[ji,’"'(r)'] =0. (3.3)
nl'm'(r)

The repeated index summation convention is employed
throughout unless otherwise noted. The set {a} of solutions
that are regular at the origin is given by {j2, } and the set
{a'} that is regular at infinity by {n%,, }. If x(r) goes asymp-
totically to a constant greater than zero, the corresponding
boundary conditions are

() ~r+18s., forr—0, (3.4a)

N (1) ~%8§”fm., for r— co. (3.4b)
The function

W(r)=1|Vink(r)|> + 1V? In k(r) 3.5)
has been expanded in spherical harmonics:

W(r) = Wy (1) Y (Q). (3.6)

From the continuity equation for G and the discontinuity
equation for the derivative, the coefficients C,. satisfy the
linear algebraic equations

{z. (ng, (1) — (="t _ (e (N}

XChe =0, (3.7a)
{(%ﬁm (r)) n (F) — (= D)™+ ™5 (r)
X (Zld? e (r))} Cowe = 81108 (3.7b)

at any radius 7. The factors ( — 1)™* ™ that were omitted in
Ref. 3 contribute for nonaxially symmetric «.

Since we already have available G {5 in explicit vector
harmonic form from Ref. 3, we can construct G from
(2.17) with U¥Y. After putting (3.2) into the definition of
U¥Y, we have
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[T . / I N
lj(r’r ) - aa [ 21, ul m' ("< )@I',I’+l,m'(r< ) + 21, + 1 uI’,m'(r< )@I’.I’—l,m'(r< )]
/ 1+1 / ] ] S(r—r) 1
@ m @ —1,m 3
[ T DY hm(F) + T Ul (r )& _1m (7)) m z
/ I+1 [ ” / I+1 / /
Y * , 3.8
21+1 Il+lm 21+1 —im 21+1 11+1m 21+1 II-—lm ( )
where we define
)= 1——)() (a=(Bt+2)()
(U)l,m—(r a Lm o) =\ +dr Lm (3.9)

We now have

>

G, = 8BGW - (—éBGW 'Kﬁx- (3.10)
For the case x = 1 everywhere, we have

6?; (l'—l") g[@;lm(ﬂ) IIm(QI)+ -‘ ’ ”+1”'(Q) +-" Il—lm(Q)
, l+1 oy " '<_l i<
(Q)+ @,,_lm(ﬂ — l(1+ l @11 1m(ﬂ )@11+lm(ﬂ> ).
"> (3.11)

IV. TENSOR PROPAGATOR FOR SPHERICAL «

In the spherically symmetric « case, k(r) =«(r), we can first construct transverse G Jw = kG Jw according to Ref. 3.
For r <7, we have

= , 1. ; 1 P 1. ;
G sow (@) =7Jw(r,w)@,-,-,,.(ﬂ)7 Ap (7, 0) Y 3 () +( —th—JEj(r,w)@j,m(ﬂ))

i+ 1)

+ (=% %z;,(r,w)%m(m)"(—Nx @2 (Q ))

= (r@) Y (V) ()T X () + 27 (ra) () =W E D “ffﬁj”@*ﬁ,m(n')", (4.12)

and for r>r

Qi ’ 1 i i ' i 7
Gicw (Lr,w) = - B (r@) i, (0)% bui (7, @)Z 3, () +(— VX 1 g (r,@)% o (W — N'x% by (Y, )%, ()Y
r
+(— sz%z;,(r,w)@ﬁm (DY( — VXYL, (@)Y

=1y (1) Y jim (V) by (F,@0) Y5 (Q) + 25 ()Y, (VG + D (2 + 1) )G L (@), (4.1b)

—
where the various ( j,n,z) functions, generically f,,,, /%, are f (reo) = ( Jj Y2 (d _j\1 o (o)
obtained from the following differential equations: FAEmETI TN+ 1 dr r Bim (10)
. . l
L [M ] =0, L {JE' } =0; Jim (1@} === fagm (1),
' N $ ng ’ r v
- j+1 d  Jj+1\1
1 {r ! f‘—lm(rﬁw) =( ) (_+ _fE' (r,(()).
Liz<=0, Lziy<=— ; (4.2) b=t 2%i+1 dr r /"
o T A a (4.4)
the operators are defined by For the spherically symmetric x considered here, the electric
Id+1) d? (TM) modes do not couple to the magnetic (TE) modes.
Ly=—-ow Z TR Because of the continuity condition for G &, (7,7,Q,0")
and the discontinuity of derivative implied by (2.16), it fol-
Li=L,+ (Ink)’ 4 + (In k)", (4.3) lows that a(r),b(r) for any r satisfy the equations
dr I — Pabrg =0, (4.5a)
— . d . 1 ,
L,=L,+ (Ink) ar’ Je8g — ngbg +z§,7—zgl =0, (4.5b)
i i . d . d
f{'o; any ;'ansivic:;;se function, the relation between {f,lm} and (Z .]Ml) Ay — (__ nm) oy =6y, (4.5¢)
Mim,»J Elm
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d . d d 1 W(ngz5)/F — Wing,zp)r' !
(d_r.]El) agp — (-—— nE,) b + (—— zE,) g = EIZEl ENZ Rl ,

d —"T W(jigsng)
. < N 1

—_ (_d._. zE,) F+l=0. (4.5d) by = W(jezs) /P — W(jeza)r'* : (4.6)

dr W(jgne)

We can solve as a function of r for
Nan here we define the Wronskian W( f,g)=/fg' —f'g. From
am = — W Gufom) t(: 3();)'“ can be shown that all the W( j,n) are proportional
by = — L , From (3.8) we can construct 6,, for spherically sym-
W jssBa) I metric xk(r):
" —r
8o (r,1") =£(_r_;_)[ i ()Y 1 (Q) + L+ 1m () + @?1—1;"(9)

W’Zl+l H+1m(0')+1, Q) ]“‘ (r) [V1+1 P )Y W ()

T (r Y5 Q) [T+ 10 P Y5 1 () T (r)F > (2] (4.7)

the relations between j,# and n,v are defined in (3.2). Here all the magnetic and electric modes have no m,m" and /,/’ coupling
and there is no a coupling.

With (4.7) and (4.1), we can integrate (2.17) and obtain transverse G ¥ = G ¥’ in explicit vector harmonic form. In the
following, the various functions f; ( f=j,n,z,a,b) are related to the corresponding fg; or f,,, according to (4.4). Forr<r

G (r,r',0) = j; (n®) ¥ (D)ay (F o) V5 (Q)

%ﬂ(r,fm)@;,,,,(n) / @;jﬂm /;4;11 @;",’_lm(ﬂ)
+ HL )Y () [ & bt (FYTH () + J_ - (f)@;*;_,m(n')]
J 2]+ 1 J 5l 21+ 1 J

+ L 0)Y i () [

uFr (Y 1w (Q) + 21_11 uj_(r’)@fj‘_lm(ﬂ')].(4.8)

Here 77,57 ,,5%; are given

- 1 )
K (rrw) = 1,,(r)(‘ / 2{'_1 a, ;1 (r)+ \ /—] 11 ,,_1(r’))—z (r) (4.9a)
J ]+1
% (r,rl a)) - l,(r) d;z 2 +1 JJ+1(r2)u (r2)+ I]_l(rz)u (r2)
) (r)f aF [ JAL o)+ [—L—a, l(rz)u-—(m]
i i 2 2j+1 G i+ 1NT27 % 2 2j+1 W= J

- v
—zZm f FAfGF T ré-‘u;(r2>+z,-f(r>f A iGF D

%(r, ) = _]ll(r)f diz[" ]+1 _U+1(r2)v (7‘2)+" _1(rz)v (rz)]

+z,f(r)f dr, M2J T ) J“+ vt (ry); (4.9¢)
2

ut (1), (4.9b)

here I =j + 1 and d%, = dr, r;x(r,). We have not been able to simplify the electric modes (7#°) further, but the magnetic
modes of G ¥ (r,r',»), the first term on the rhs of (4.8), using (4.6), can be written as

) i 3 r”
_Im(n@) 5, Q) N (7,0)

«(r) x(7)
Similarly we can obtain G ¥ (r,r',@) for r> 7, and it is symmetric in r and r’.

YA (D).
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V. THE PROPAGATOR IN MIT BAG IN COULOMB AND LORENTZ GAUGES
The usual MIT bag model boundary conditions can be obtained from the statement

1, R
K(r)={K :;R (5.1

in the limit «, —0. This gives D = 0 (except for / = 0) and H = O for 7> R. From the usual boundary conditions that E;, D,,
H,, and B, are continuous, this implies r-E = 0 and r X B = 0 as 7— R inside the bag.

First we solve the gluon propagator in Coulomb gauge with the method given above. It is not difficult to solve the scalar
Green’s function equation (3.1). Here we are interested only in 7,7 < R, and we neglect the terms of higher order in x, (Ref.
8):

, r 1 I+1 7 11 11—k
GMIT(r’r’m)=I;l 241 [/ ] RU+! Ylm(ﬂ<)Y7;n(Q>)+E_‘[;:‘+ <R ] (5.2)

Although the last term is infinite, it is independent of  and 7 and does not contribute to the transverse delta function.
From definitions (3.9), we have

(rl)+=09 (’J)_=(21+1)'J—19

(rmU+D)* = 2::21 , (rmUrD)= =0, (5:3)

After putting these into (3.8), the transverse & function is given by

i ’ r, ’
65:MIT(r’r ) ——) [@Hm QY2 Q) + .‘ ’ Il+lm(0) +.‘ ’ I+1 @;1_1",(9)
: _ , .
X( 21+1 Yitom () + 2I+l Q) )]

w ; 1+ D!
— z r’(—l @/ﬁ_l,m [,/1(1+ 1 H_#

= R21+1

1
77 Vlem (@) +

Gt 1 (2 )] . (54)
We see that the transverse & function for the MIT bag is different from that for free space only in the electric mode. Note

that 5, M iS quite simple, so we solve (2.15) directly instead of using (2.17). The Green’s function for the MIT bag is then
GMIT rro)= —o [_],(x< )Y 1 (Q )] [an (x,)¥%. (0, )] i
+o [vxi,(x )Y i (@ DT [V g (x, ) ¥E,(2,)]>

)

X ;
[VXX. ¥y (O )] [VX( e X2,+1)@/um(9 )] . (3.5)

+21

We define x' = w7/, x = wr, X = wR,; j,n, are spherical Bessel functions; 7z, (x7,,)’ vanish at » = R to satisfy boundary
conditions B, = O (see the Appendix) and E, = 0 at 7 = R, respectively. Thus

Firg (%) = (x) — CMljl(x):

Ag(x) =n,(x) — Cgj(x), (5.6)
with

Co = (Xn,(X))/ (X, (X)), Cg = n (X)/j,(X). (5.7)

Using relation (4.4), G can be written in the more explicit form

G;';IT(I',P',(O) = _m[jl(x< )@llm((2 )]i< [;lMl(x )@ﬁm (Q> )]i>

—o [, Ju X )Y g (R )] { (ny (x,) = Crrju- (x, N¥%. (2, )]’)
=,

r _lil
_ i T+ 1xi-! s
+aoI+ 1'%, () [x"/iz Fhem(Q,) +—}5+,_ Yh_1m Q)] (5.8)
i
where we define : .
, (’) = _ ! (’) . (5.9)
Li+1 I+1

(]) _ /l+1 (L) n/y, 214+1 \n
RL—1 241 \n/i- To see the gauge invariance explicitly, we now solve the
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linearized gluon propagator for the MIT bag in the Lorentz
gauge. In the Lorentz gauge, the gluon field A # satisfies the
wave equation
— (VP4 D)4+ =j* (5.10)
inside the bag. It also has to satisfy the gauge condition
d,A*=0 in the bag, and the boundary conditions E,
= 0,B, = Oat r = R. This gives four conditions, becaue the
last equation has two components.

We construct A#=A44+ A% to satisfy all require-
ments. The inhomogeneous part 4 4 can be chosen to be a
particular free space solution. We choose the free space
Feynman gauge propagator to construct our inhomogen-
eous part 4 §¥ = A 4. It has the local property G %, (r,t;r',t")

=ghtGp(r—r',t—1t'). After Fourier transformation to
time, it can be written

G4, (wrr)

= —go 2h(wr<)n,<wr>)1’,m(mn,.(a'>*,
" (5.11)

GP(wrr)
= —a Y jilor)n(or”)Y,, (2)Y,, (Q)*,
Im
5p(w,r,r’)

= - ;jl'(w"()nl' (0r™)¥ 1y (Y ., ()%,
’'m
(5.12)

We can see that AL ()
=fd¥ dt'G4%, (r —r',t—t')j*(r',t') satisfies the wave
equation (5.10). The gauge condition,

3,4 %(r,t)
=fd3/ dt' Ge(r—r't—t')d,’j*(rt') =0,

is satisfied because of the local property of the propagator
and current conservation.

The homogeneous part A4 4 satisfies the homogeneous
equation

— (V240?44 =0. (5.13)
The most general solution to (5.13) can be written as

A% (rw)

= 5 (624N Y (@13, b (@1 (@)),
Im '
(5.14)

where all (59,b,.) are constants. We also write the current
in spherical harmonics

jErw) = ; (c‘,’(wr) Y (Q),i; cn (@NY 4o (Q)) .
(5.15)

Current conservation requires

I+1 (d _I__—i_—_Z_)

20+ 1 \dr

wc)(or) + -

Criq1 (0r)
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I—1

) c,,,_ 1 (a"') =0
(5.16a)

1 ( _d
2041 dr
inside the bag, and

T+ 1 i
/ 211 - € (@R) — /21—“ ¢y_1(@R) =0

(5.16b)

on the boundary. With (5.12) and (5.15), we have 4 4 on
the boundary

A% (Rw)
= Z ( ?n, (Q)R) YIm (Q),i 2 gurnl' ((L’R)@”:m (Q)) ’
" (5.17)
where constants £’s are defined as
R
£0= — o f P drj(or)(or),
(4]
R
& = ——wJ P drj,. (or)c, (or). (5.18)
0

After angular decomposition, we obtain four sets of al-
gebraic equations for the (b9,b,.), by putting (5.14) and
(5.18) into the equations for the four conditions. For the
gauge condition, we have

I+1 l
b?+1 ,—27-5—_—1"1’1,“1 +.‘ ’21—_'_—11?1,:_1 =0.

(5.19a)
For the boundary condition of the E field,

"211‘-:__11 (n, 1 (@R}, 1 +j1i1 (@R)by 1)
!

2141

—(n,(wR)'EY + i (@wR)'D) = 0. (5.19b)

For B field boundary conditions, we have two equations

(n_ 1 (@R)E); 1 +Jji_ 1 (@R)by;_ )

(n,(@R)E}; 1 +ji(@R)by, )

20+ 1
I+1 .
21_:_ 1 (n,(@R)E;;_, +ji(@R)by;_ ) =0,
(5.19¢)
[Rn,(wR) )€, + [Rji(@R)]'b, =0. (5.19d)

We see that the algebraic equations are decoupled in /
and the magnetic mode coefficients ,, decouple from elec-
tric mode coefficients (5,5, , ). From the current conser-
vation relations (5.16), the first three sets of equations for
the three sets of electric modes coefficients can be proved to
be only two sets of irreducible equations. Thus, there are
infinite sets of solutions in the Lorentz gauge. In Ref. 4,
DeGrand and Jaffe state that the solution for A given in their
(B.4,B.6) is unique because it satisfies the boundary condi-
tion (B.2). In fact, in the Lorentz gauge, this is not sufficient
to fix the gauge. Here we fix the gauge by the special choice
b9 = 0. This determines all the b;,., and we obtain 4 #. With
G* = 64 */5j,, we have the linearized gluon propagator in
the Lorentz gauge
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G(orr) = — a)Zj,(wr<)n,(a)r>)Y,,,,(_Q<)Y,,,,(Q>)*

é(w,r,r') = — a)zj,, (@r<)n (&r” )Y o ()Y 4 (7 )* + 0Chpfy (0P Y 1 (Q)j) (07 ) 1y, () *
i

/l. /11. < /l. /l+1. >*
+‘UCEI( m—l]l+l@1,l+l_ '2-1%11—1@1,1—1) X(' m_l.ll+lgl,l+l_ 21__*_111—1@’1,1—1)

here the C,,;,Cj, are the same as in the Coulomb gauge. The
sum over / and m is implicit. We can see that the magnetic
mode of the propagator in the Lorentz gauge is exactly the
same as in the Coulomb gauge.

Vi. GAUGE INVARIANCE

We begin this section with a review® of gauge invariance,
but for an inhomogeneous static dielectric medium
(x = u~"). The inhomogeneous Maxwell’s equations are

d*k(r)F,, =J,, (6.1a)
and the homogeneous equations are
e 3, F,, =0, (6.1b)
where
0 E, E, E,
ol ™® 2 & B (6.22)
# —E, B, 0 —B,
—E, —-B, B, 0

Introduction of the four-vector potential 4 * = (A4,,A), with
B=VxXA, E= —VA,—JdA, (6.2b)

guarantees the satisfaction of the homogeneous equations.

The 4 * must then satisfy [cf. Eq. (2.1)]
dk(r)[d,4,—3,4,]=/J,.

The 4 # are not unique. Note that F,,
under the transformation

Ay—Ay) = Ay + 9.y,
A-A'=A—-Vy. (6.3)

Restrictions on the 4 # determine a choice of gauge. The
Coulomb gauge condition is

2.1

remains invariant

VkAc =0. (6.4)
The Lorentz gauge condition is
VexkAp + k8,4, =0. (6.5)

Different potentials obtained from the same current are
connected by a gauge transformation. We now display the
gauge transformation that relates the Coulomb and Lorentz
gauges. Let A { be any Lorentz gauge potential. Then choose
XYcu to satisfy

VeuVyo =k 3,4y . (6.6)
The transformed potential

Ao =AoL + . xcrs

A=A —Vyc, 6.7

clearly satisfies the Coulomb gauge condition. We see that if
d:Aq. =0, YL can be chosen zero. When y(, is zero, the
two gauges have the same A4 # field. Note that 4, is the longi-
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(5.20)

Edinal electric part, so 4, = 0 in the magnetic (TE) mode.
That is why for static current, or for the magnetic (TE)
mode, the two gauges can have the same 4 # field and propa-
gator as we discussed in Sec. V.

Second, we discuss uniqueness. First consider free
space. In the Coulomb gauge, if two solutions 4 #,4 ' satisfy
the wave equation, the gauge transformation function y
between them must satisfy V2y. = 0. The only solution that
is regular everywhere is a constant. So the solution for the
Coulomb gauge in free space is unique up to a constant. In
Sec. V, we found that the solution in the MIT bag is also
unique up to a constant. In the Lorentz gauge (Fourier
transformed in time), the gauge transformation function
satisfies (@® + V?)y, = 0. If @ is not zero there will be an
infinity of nontrivial regular solutions, e.g., j,(w7)Y,,,. In
Sec. V, we displayed this for the MIT bag.

Now, let us look into the Feynman gauge
(G*" = g*""G), which is one of the Lorentz gauges. It was
proffered in Ref. 6 for the MIT bag. In free space, we have
exhibited that the Feynman solution (5.11) automatically
satisfies the Lorentz gauge condition. But in the dielectric
medium, this is not possible. As a special example, consider
the MIT bag. If the propagator is written in the Feynman
form,®

tie =" [ 67 + 3 i (nji (@) Vi @ 7500,
im

(6.8)
there is only one parameter for each / mode. It is impossible
to satisfy the four conditions that give three irreducible alge-
braic equations for each / mode as given in Sec. V, and we
find that the solution in Ref. 6 does not satisfy the boundary
conditionr X B = 0 (see the Appendix). The problem comes
from forcing the homogeneous part to be of the Feynman
form: Although the Feynman form
g*%(on)j,(or') Y}, () Y ¥, (') is a solution of the homo-
geneous equation — (w? + V2)G %’ =0, it is not the most
general one; the mode constant ¢, could depend on u and v.

Now let us look at gauge invariance for one gluon inter-
action in the MIT bag, with the propagator given in both
Coulomb and Lorentz gauges in Sec. V. The magnetic (TE)
modes in both gauges will surely have the same contribution
since they have the same propagator. The OGE magnetic
mode matrix element is given by

Hy,=—-wo f cyor<)j(or<)(n,(or>)

— Cop Ji(or™))ey (0r™). (6.9)
The contribution of electric (TM) modes will now be proved
to be the same in both gauges. With the current conservation

equations (5.16), we have the electric mode Hamiltonian for
both Coulomb and Lorentz gauges:
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Hy=wo f( ’21+111+1(0)r Yey o (or ) — ’ 27 ], (or ey (or, ))

X( mn1+l(mr )C,]+](a)r )'—

+
_+

21+ n_(or, )e,_(or, ))

’ I . ’ I+1 .
—oCy f ( ’m]u 1{or ey (o ) — "2';-‘:_—1.11— 1(or ey (or, ))
(1 ’ Jl+1(‘0" Yo (01, ) — \ ’ T 1 Ji—a(or, )ey_(or, ))
rld I+1
f r(‘/21+1 ¢y (or) — ‘/ + c”+1(wﬂ (6.10)

All the notations ¢, for the current above depend on the initial and final states of the quark, which have been suppressed
for simplification. Here we calculate the charge and current density for quark states («,«’, g, 12'). In the MIT bag, the quark
wave function can be written

f—

u(r)
v= (ia,mr)) Yo (D). (6.11)
The charge density is
L) =y, Y, = cp (@rie'upn’) Y, (), (6.12)
where

@2l + D@, + D), + D@, + DEIF D

Com (@rucc’pps’) = (— V2~ *(uu, +v,.0, )\/

47
Lo IN(de de I\[h Je 1
x(“ “ )(" Je )[ J ] (6.13)
0 0 O/ \—p ¢ m/l L 1}
The current density is
i) =yL ai,, =icy, (wrxc'uu' Y% ., (D), (6.14)
where'?
. 2/ 12 +1)(2j 1)(2 nERI+1 "+1
c:rm(wr,xx',uﬂ')=(—1)#+1+:\/( DL+ D@+ DGy + DRI+ DI+ D)
T
"1 J')(I,, 1 J’)
_ 1yl iy '
x[3( 1) (v,,u,(+u,(v,();(21 +1)(0 o o/lo o o

I J' 1 jx jx’ l
{ ] L g —-1—(-—1)1‘”“““/2(0,‘@—u,,v,,)

b1 i” (6.15)

i
'11)(@11‘
><(oooooo

r

VII. NUMERICAL IMPLEMENTATION We also used the Perry’s propagator given in Ref. 6 and
the same charge and current density given in (6.14),(6.15)
to calculate the matrix elements; we found disagreement ex-
cept for the electric monopole terms. This is consistent with
our arguments above.

We have calculated the one gluon matrix elements for
the MIT bag in the Coulomb gauge and in a particular Lor-
entz gauge. We also compared our results with the work of
Wroldsen and Myher,* who work in a Lorentz gauge with-
out solving for the gluon propagator. We found three-way  Viil. CONCLUSION

agreement for the following ¢,¢,—¢,'q,’ elements: ss—ss, In the Coulomb gauge, we have obtained the scalar
SP12—5P1/2s Pri2Pr2—Pri2Pry2 SP3;2—SP3s» P32Pi;2z (time-time) and tensor (space-space) gauge field propaga-
P32 P3/2s SP1/2P1/25  SP3j2—P3/25- tor in a general dielectric medium x(r) (u = «~"), supple-
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menting and correcting the results of Ref. 1. We found that
there is a subtle error in the transverse current of Ref. 1. A
general transverse tensor projector is formulated utilizing
the scalar propagator, which is x(r)-dependent. We recover
the usual transverse dyadic delta function when x = 1 every-
where. We have found a formula to construct the correct
tensor propagator from the tensor propagator in Ref. 1 and
the transverse projector. The general transverse projector is
calculated explicitly in terms of vector spherical harmonics.
We also have corrected a sign error in the scalar propagator
that appears for nonaxially symmetric media. In the case ofa
spherically symmetric medium, explicit expressions for the
tensor propagator are given. In the MIT bag model, the pro-
pagator is calculated in both Coulomb and Lorentz gauges,
and gauge invariance is shown explicitly for one gluon inter-
action.

The gauge field propagator is very useful for obtaining
OGE matrix elements in various bag models. We also plan to
use it to obtain the nonlocal self-energy in a chromodielectric
model® by solving the Schwinger-Dyson equation with the
(nonlocal) gluon propagator.
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APPENDIX: BOUNDARY CONDITION FOR THE
MAGNETIC MODE

In the magnetic (TE) mode, the vector field is
A (o) = —iw Zﬂz(wr)@u(ﬂ), (A1)
Im

for which r-A = 0 holds everywhere; it automatically satis-

fies the boundary condition of *E, _ ; = 0. Since it does notl

couple to the electric modes, its boundary condition can be
considered separately. The remaining constraint for the
magnetic mode is

prIr:R =0‘ (AZ)

The transverse part of current which couples to this mode
can be written as

jTE(l',a)) =i;c,l(ﬂ)r)@”(ﬂ), (A3)

which satisfies rj = 0; the ¢, is defined in (6.15). For either
formulations of the propagator Gj, namely
— g} jilor )i (or )Y, ()Y () in Ref 6 and
—ajy(or Y (or ) 4, ()%, (Q) in Egs. (5.5) and
(5.20), one has Az = fG"j z in the form of (Al). (One
should note that for some special transitions, e.g., ss — ss,
SS — P12 P12 » Only the magnetic mode contributes to A
since the total current is transverse.) The f;, in (A1) can be
written as

Su(or) =i, (or) J dr r*,(wr)c, (or')
0

R
+Jj,(wr) J. ar r’a(or)c;(or). (A4)

The boundary condition (A2) can be written
rX(VXA) = i‘(ri 0 A, —r; 3 4,)

=k, (r.A4,) — (Bur)A; — 1, 3,4,
— _A—r9A_ ——( rA);  (AS)
ar

In the third step, r*A = 0 has been used. So in radial form,
the boundary condition is

%(’ﬁl(wr))|r=

inserting f;, from (A4) into (A5) we have

r =0 (A6)

g;(rf,,(mr)) _9 [rr'z,(wr) ] [f dar r’zj,(wr’)c,,(wr’)] + rit, (wr) P, (wr)cy (wr) + i [rj,(cor)]

[J ar r’ziz,(wr’)q,(wr’)] — rji(or) i (wr)¢ (or) — [f dar ry (a)r’)q,(wr')] — (R, (wR)).

This requires
a ,,.
—aE(Rn,(a)R))=0. (A8)

Here 7 is given by (5.6) for the Coulomb gauge, or by (5.20)
for our Lorentz gauge. One finds in both cases

ﬁ(wr)=n(wr)_M (or), (A9)
1] 1 (R l( R)), I
which does satisfy (A8). However, Perry® gives
- (n,(@R)) .
(wr) =n(wr) - —————j,(wr), (A10)
A, (or) = n,(wr Gi@R)Y Ji(wr
which gives, for the lhs of (A8),
a - 1
—{(R R))= — ——5£0, A
3R (R#;(wR)) sz((oR)'#O (A1D)
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]
which does not satisfy the boundary condition.
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This paper presents a refined asymptotic expansion for the partition function ®(¢) = Tr e of
quantum billiards in the unbounded regions {0<x,0<yx*<1}, £ >0, and {0<ye™'<1} CR?,
where A is the Dirichlet Laplacian. Simon [ Ann. Phys. 146, 209 (1983); J. Funct. Anal. 53, 84
(1983)] determined the leading divergence of the trace of the heat kernel for the first class of
systems. Standard techniques are combined for the evaluation of ® for bounded region
billiards with results by Van den Berg [J. Funct. Anal. 71, 279 (1987)] for “horn-shaped
regions” using an optimized way of dividing the region into “narrow” and “wide” parts to
determine the first three terms in the asymptotic expansion of ®. Results are also stated for
bounded regions with cusps that can be obtained by the same method. As an application, the
spectral staircase of the strongly chaotic billiard system defined in the region {0<xy<2,x>0},
which has been discussed in connection with the Riemann { function and the search for

quantum chaos is considered.

I. INTRODUCTION

Billiards (i.e., a point particle of mass m sliding freely in
aregion } C R? but being prevented from leaving the region
by an infinitely high potential wall) form a large class of
systems providing examples of all kinds of regular and chao-
tic motion. If we put #i = 1 and m = }, their quantum Hamil-
tonianis — A (where A = 3%/3x* + 3*/3dy* is the Dirichlet
Laplacian for ), and Schrodinger’s equation reads:

(A +A)Y(2) =0. (D

[ We denote points (x,y)eR? by z]. This is also Helmholtz’s
equation that describes vibrating membranes.

If |Q] < o0, the spectrum of (1) is purely discrete; let A,
be the nth eigenvalue of the Schrédinger equation (1), then
the partition function ®(t) of the billiard is defined as

O(t): =Tre? = i e M

n=1

=f d*z G, (t|zz2), t>0, 2)
Q

where G, (¢ |z,2') is Green’s function of A — (d/dt) (Dir-
ichlet heat kernel). The partition function of quantum bil-
liards (or membranes) has attracted extensive attention be-
cause its behavior for £\, 0 is intimately connected with the
geometry of the region considered:

9] _Lo® 1
4rt gy 6

The last result holds for simply connected domains with area
|©2| and smooth boundary d€ of length L(3Q). Three more
terms are given in Refs. 1 and 2; corrections for boundaries
with edges and cusps are discussed in Refs. 3 and 2, respec-
tively. '

Apart from the question of inferring the billiard geome-
try from Eq. (3) (“Can one hear the shape of a drum?”,
[Refs. 1 and 4], Eq. (3) can be used to obtain an asymptotic

t\0. (3)
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expression for (N(4)), A — o, with (- - -) denoting an aver-
aging process and N(A): = #{n|41,<A} (“spectral stair-
case’).

Under certain assumptions, billiards in unbounded re-
gions also have a purely discrete spectrum (see Refs. 5 and
6), but even if ©(¢) < + oo Vi > 0 (for a criterion see again
Ref. 5), the expansion (3) has to be modified.

In Ref. 5 Davies derived bounds on @ () for very gen-
eral domains () CR"; however, they reveal only the first term
of the asymptotic expansion of ®@(#). The next term can be
obtained by an approximation due to Van den Berg’ in the
case of “horn-shaped” regions:

R?D 0 horn-shaped: & Q = { — g(x) <y<f(x)},
f&R-R __ decreasing for x >0,

increasing for x <0

withllim Sfx) = lim g(x)=0.

x| — o |x] = o

In general, his method is precise up to order o(1/\t),
which suffices for two terms in the examples studied here.
His approximation for the partition function is [with
h(x): =f(x) +g(x)1:

o @ 2
1 J’ deexp(—’”rzt),

W — 0 n=1 h Z(x )
and it can be obtained by replacing the trace in Tr " by a
classical phase space integral after having applied a Born—
Oppenheimer approximation [i.e., having introduced poten-
tials ¥, (x): = n*7*/f*(x) given by the eigenvalues of the
one-dimensional billiard problem for x fixed].

We shall—in addition to hornshapeness—assume that
the functions f,g are convex on ( — «,0), (0, ), and deter-

© 1990 American Institute of Physics 1670



mine the third term of the asymptotic expansion of ®(¢) for
the above-mentioned regions by a combination of Van den
Berg’s method with standard techniques for bounded-region
billiards. In summary, our method can be described as fol-
lows.

(i) Integration of Gg(t|zz) over the region
Q1): = {zeQ |3 circle K:zeKCQ; diam (K) =¢"2~¢}
(€>0) with classical methods. The boundary condition in-
fluences (roughly speaking) only the points within a dis-
tance of \/t from J9, therefore most of the points of the
above mentioned set are not affected by the boundary. For
them we can use the free heat kernel with small corrections
(“Kac’s principle of not feeling the boundary.”*’ To obtain
an upper bound, Lemma 3 in Ref. 7 can be used; for the lower
bound error terms vanishing as £, 0 stronger than any pow-
er of ¢ are required. They can be supplied by inscribing cer-
tain squares Q into Q and using G, (¢ |zz) >G, (¢ |22).

(ii) Integration of G, (¢ |zz) over the region Q\Q(?)
with Van den Berg’s formula,” quoted in Eq. (10) below.
The points of this domain lie between two nearly parallel
parts of 3 (“horn”) with distance smaller than ¢ />~ ¢, and
they are strongly affected by both of these parts.

Our paper is organized as follows: In Sec. II we state our
results for unbounded regions in terms of three theorems. In
Sec. III we give the proofs of Theorems 1-3. Performing the
integration mentioned under (ii) we find that the approxi-
mation is precise up to order ¢ ~ < in the first example there is
a competing error term of order ¢ ~ /2~ [due to Q(¢)]
requiring the choice € = J; a similar situation (error terms of
order ¢t ~€and ¢ — (/172 gecurs in the second exam-
ple. In the third example (Theorem 3) any choice €>0 is
allowed. In Sec. IV we present two results for regions with
cusps, which can be obtained by calculations very similar to
the ones performed in Sec. I1I, and which generalize results
by Stewartson and Waechter.? Finally, in Sec. V we use the
results from Sec. III to obtain information on a “smoothed”
spectral staircase for the billiard region {0<xy<2}NR?
and comment on a remark by Berry® on a hypothetical con-
nection of the spectrum of this system with the imaginary
parts of the nontrivial zeroes of the Riemann & function.

Il. RESULTS FOR UNBOUNDED REGIONS

Our results are formulated in the following three theo-
rems.

Theorem 1: Let A be the Dirichlet Laplacian for
Q = {(x,p)eR?,_|0<xy<1}, then for 7\\0,

Q) =Tre" = _!&qi_ 5 +0(t %,
4t 4wt 8wt
4)
where
A=1+y—2log(2m) = —2.0985---,
B= —4[7"/T* ()] = — 1.6944--, (5)

where ¥ denotes Euler’s constant.

For an early reference about this system, see, e.g., Ref. 9.
Note that Van den Berg’s method,”'® suffices to determine
A, though he did not exploit this. The coefficient 4 could also
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be found by a careful Dirichlet-Neumann bracketing'' fol-
lowing the lines of Simon’s proof 3 in Ref. 12.

There is no obvious interpretation of the first two terms
(as there is for the classical case.">* ) Here, Bis (in a short
but very informal phrasing) the difference between the
length of the hyperbola and the length of two half-axes, and
the remaining factor is that one that is expected for perimeter
corrections.

Theorem 2: Let A be the Dirichlet Laplacian for
Q = {(x,p)eR?, |0<yx*<1}, 154 >0, then for £\,0,

1 T+ u/2)8(p)

— A __
O =Tre" = DA+ Qe+ 172
_ﬂ—_%r( 9L)
8yt M
+ Ot _'/2"‘+”+t_"/2“‘+”), (6)
where

ZJ‘“’( 14 x 2E=+D _ 1)dx
1

=1—V24 2"V T+ B P - 1225 (2),
B=u/2(u+1).

Let £(u) denote the Riemann zeta function and 2§ (z) the
associated Legendre functions of the first kind.

Note that the limit z — 1 in Eq. (6) exists and leads back
to Theorem 1. Theorem 2 refines the expansion given in Ref.
13 by Simon.

Theorem 3: Let A be the Dirichlet Laplacian for
Q = {(x,9)eR?|0<y<e "1}, then for £\\0,

®(t)=Tre’A=|Q_l+ﬂfﬂ_ B o9,
47t SW 8\/H

N
(for any € with O < € <), where

B'=2(3log2 — 1 ++2 —log(1 +2) — ) =2.0701---.
(8)

The last billiard system was introduced in Ref. 7, and Van
den Berg determined the two leading terms. Note that the
first term is analogous to the standard situation, whereas the
second and the third term lack any simple interpretation.

Unfortunately, we have not been able to determine the
t° term in the expansions (4), (6), and (7), which in the
case of bounded regions reflects a topological feature of the
billiard region. As we already mentioned, the 1/yt contri-
bution in Theorems 1 and 2 is due only to length contribu-
tions. This could indicate that the subsequent terms follow
the standard pattern given in Ref. 2.

lil. PROOFS

Proof of Theorem 1: The proof is given in three steps
corresponding to the integrations over Q\ Q(?), Q(2), Q;:
For t given with O < £ < 1 let the sets )(¢), ; be as follows:
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Q) ={=px<t ~*Ay<t ~INQ,
Q, (1) = {(xp) |dist(z,{xy = 1}) <}t *}NQ(1),
Q, ={x»|xy<itnQ,
Q, (1) = {(x,p)|dist(z,{xy = 0})
< INQONQ,.

[We will sometimes omit the ¢ dependence of (0, (#),9, (2);
the sets are illustrated in Fig. 1.]
Step 1: integration over Q\(#):

f d?z G, (t]2z)
LIAN1¢3]

_ _%108t+7/—210g(27)
47t 4t
+ +0@ ~"), \O. 9
t3/4 477.

Proof of Eq. (9):: Theorem 3 in Ref. 7 states for

fi[*0,0) =R, decreasing and DCR? with DN{x>x,}
= {(x»)eR?|0Ky<f(x), x3x,} = D',
f(xo) J dzG,(t|zz) — J‘ dx ®(t,x)
417'[ X0
f(xo (10)
8\/_

where O(t,x): =3"_ exp( — mn’t/f*(x)). We choose
X, =t ~Y*and f(x) = 1/x. The integral over ®(2,x) can be
carried out after use of the transformation formula of the
Jacobi theta function:

f dx i exp( — m°n’x’t)
t 174 n=1
= dx i exp( — mn’x?)
\/_17'—{ J:|/4\(7 n=1
. 142 3 exp(— mn*/x?)
- dx1 n=l -1
Jat Jome 2 x

7 ()
//// Qa(t)
\\\\\\\ 13

L —

ZZZ\N\N NN
7

—

\ ot

FIG. 1. The sets used in the proof of Theorem 1 are shown.
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1 ® ®
+— dx exp( — 7n’x?)
Nt A n;l
_ Alogtmy 1 g4n
4t 27t
1 ( Y
+ 1+ —1 log(4rr))
vart 2
Nt Jo X n=n

Here we have employed

f -‘ii(1+\/5) D e‘"z’”‘=1+—g—§log(41r).
1

n=1

(12)
This can be obtained from
/2
£(z) = T [ 1
I'(z/2) z(z—1)

J udadl - e—nzfru(u(l—z)/2+uz/2)] (13)
1 U =1

(c.f. Ref. 14, p. 21) in the limit z— 1.
For x with 0 < x < 7/y/log 2,

o 2
n-ir

Z exp( _ _2)<2e~ 77/x2<2x3e— 1r/2x2,
X

n=1

which gives the required bound for the last term in (11).
Step 2: integration over (#)\Q;:

Let H, =J (V1 4+ 1/x* — 1)dx, then
1

J- d’z Gq (t|22)
QONQ;

_NQ,| 20TV (H -3
47t N
+0(: =%, \O0. (14)

Proof of Eq. (14): Van den Berg’ showed for regions
with R-smooth boundary (for z,€d(Q there is a circle K with
radius R and dKNQ ={z}): Let zeQ,UQ, and
& = dist(z,0(1), then
45

1 5
G tzz)<———{l—e‘5/’+
ot 47t R

— 8/t t
(15)

For zeQ (1) \ (1, UQ, UL, ) we employ
Gy (t |z2)<1/4rt. (16)

We choose R = 2 and integrate:

f d’z G, (t|zz2)
Q()\Q,

<|Q(t)\ﬂ3| __l_f e“sz/'dzz
4t 47t Jo,ua,

_+___1__ Se —éz/rd S AL § Iﬂ(t)l
27t Ja,uq, 47
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Let 8(z) = dist(z,{xy = 1}) and s(z) be the arc length be-
tween (1,1) and the projection of z onto the hyperbola. Since
for C={0<8<it's, <s<s, }:

2
fe—é/tdzz
C

Y (174174 .
=f dsf ds(1 + k8)e %"
s (0]
Jmt 1
=0 —a) 5 (1 ete (7))

+o (=) | kds (17

(x: curvature of the hyperbola) and
f Se=%'d?;
C

55 (1/4)1'7% s
=f dsf d8(1 + kb)be =%/
S (4]

=—;—-(s2 —5) (1 —e V) +t3/2f kds

X[ﬁ(l—erfc(—— ! ))—t_l/de_'/""’"],
4 16yt 8
(18)

it is easily seen from (18) that f, e~ gy — 0(t¥4).
Furthermore from (17):

W(l—erfc(zll?))f Vi+x—*dx
1

<f e_'sz/’dzz
Q1)
! l/4+ (]/4),I/4 ﬂ.t
<\/1rtj Jl—}—x“'dx—}-z-,
1
and using

Sl+u=*du=x—1+H, +0(1/x%),
X — o0, one finds

f e~ d2 =7 (t =V — 1+ H)) + O(1%).
0,00

Since the integration over (), is trivial, it is clear that

|Q2(t) — Q]

O 4t

2t V4% 4+ (H, —g)]) N
- < Q0.
&mt

To obtain a lower bound we integrate the following inequal-
ities:
zeQ), (1)UL, (1)

lim sup ¢ '/* (J. d*z Gy, (t|zz) — [
QHNQ;

(19)

=G, (t|zz)>1—:e—_i/—'—-—l-exp(— 1 ) (20)
° 4mt wt 2t/
2eQ(O\(Q, (HUQ, (1)U, (1))

1 1 1
=Gq, (t|z2z2) p— — —exp | — .
o (t|z2) 4mt Tt p( 32«/t)

J. Math. Phys., Vol. 31, No. 7, July 1990

(21)

1673

The first one can be taken from Ref. 15 after a trivial geomet-
ric consideration showing that for z,edQ(¢) NJ(2 there is a
square QC (1, with one side centered at z,, tangential to JQ
whose sides have length / = Jz '/%. For this bound the convex-
ity of y = 1/x is indispensible. If zeQ (#)\ (Q, UQ, UQ;),
there is a square Q' C Q with center z and sidelength [ /,2
and again'® establishes the bound.
Integrating we find:

f d*z G, (t)zz)
Q(OH\0;

>|Q(I)\03| _L e_'sz/’a'zz
47t 47t Ja,(nun,mn
1801 (L)
45 32t
2ONQ;] 1

)
4t At 2

L_!mmexp(_ ! )
4 4 32‘/7 ’

and therefore

— o <liminf¢ V“(f d?*z Gy, (t|z2)
o — 0,

no

3 [|Q(t) -0, 2"+ H - })
4t 4fmt '

Together with (19) this completes the proof of (14).
Step 3: integration over £,

O
0< dzan(tlzz)—<| 3'—;)<i,
a, 47t &Jmt T

(22)

forO<t< b,

Proof of Eq. (22): Let G, (¢ |zz') be Green’s function for
the unit square, and G, (¢ |zz') Green’s function in the case
of Dirichlet boundary conditions on {xy = 0}. Then

1 & 5121 1 1)\?
d*z G, (t zz)=[—— e—"z"’} >_( ___)
L, ol 2 g', 4\ @7 2

(for 0 < t < 1/7) by virtue of the Jacobi theta function trans-
formation formula. Furthermore
172

2
dzzG,(tlzz)=L( dx(l—e_"z”))
4t

Q, 0

< €2, | . 1
SAmt §fm
for 0 < < {, (because of erfc x<2/x7).
The proof of Theorem 1 is obtained simply by adding the
results of the three steps, Egs. (9), (14), and (22). The func-
tion H, will be determined in the Appendix. O
The proofs of the other theorems are very much like the

proof of Theorem 1, therefore they will not be given in great
detail.

Proof of Theorem 2: The sets considered for the proof of
Theorem 1 have to be replaced by

Q@) = {(x,y)|x<t _'/2“+“’/\y<t — 120+ VmYN Q)
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Q, (1) = [{(xp)|dist((x,9);{x*y = 1})
<il R+ ”,x)y}ﬂﬂ(t)]
U [ {(xp) [dist((x,p);{x*y = 1})
<§t1/2(”+ l)’x<y}nﬂ(t)]’

Q, = {(xy)|xy<iInNQ,

Q, (1) = [{(x,p)|dist((x,);{y = 0})
<% tl‘/z(l-l+ ”,x}y}ﬂﬂ(l‘) ]
U [{(x,p)|dist((x,y);{x = 0}
<3 t2EH D x < pINQD) |\ Q5.

Note that the thickness of the strips Q, (¢), , (¢) jumps at
{x =y} (in contrast to the situation shown in Fig. 1). Ina
first step the integration over 2\ )(¢) has to be performed

using Van den Berg’s inequality (10). Forx, =¢ —'2®#+ 1V
the integral
f dx i e—nzn'ztxz“
X9 n=1
_ 1 TA+1/2u)5(1/u)
iz e
/(1 —u) xo_"“”+x—o~— () ~V
Jért 2 2u
Xfw duy — VD W/E+D < =" (23)
xg W/ mt nz—;l

is required that is evaluated with the help of (13). Modifying
(17) and (18) one finds

f dze~ 8/t
Q,N{x>y}

\/727'7 (t —1/2(p+1) _ 1’+H,¢) +O(t'”'/2("+”)

f dzzae—52/1=O(tl-—l/Z(lt+1))
0,N{x>y}

[with  H,:=fr(1+1/2%70 —1)dx].  Since
| U{x>p}| = O(r #~ D72+ Dy the integration of
(15), (16), (20), and (21) gives

f d*z G(t |[xp.xp)
Q\Q;

_ 19\, _(2t CerD — 3+ H,
4t 8wt
+ 0(t1/2—l/2(;4+1))) _( (_)i)
7

+00 - 12+ 1) +t —p/2p+ l))’ t\O. (24)

Since
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— 12+ 1) d 1
x
x* # s

xp#
=1+ ).
l—p 1—p Iz

one obtains the proof of Theorem 2 by dividing (23) for u
and 1/u, respectively, by 4zt and adding (24). |

Proof of Theorem 3: It suffices to consider {x>0}N Q.
Let x, = }(€ — 1)log ¢, then with (12):

1Q(t)|=1+J
1

* had 2 2. 2
dx Z e—n e

X0 n=1
1 €
=——(t " —m)+—logt
Var 4
1 1 télz‘iy © ~ zyz
+—(y—2log2+2) —— = e ",
4 & ‘/; () yznz_-:l
(25)
Denoting

Q@) = {212 cx<x 1N,

Q, (1) = {(x,p)|dist{(x,y),pe" = 1)
<;"t”/2)“_‘)}ﬂﬂ(t),
Q,(0) ={(xp)|0<y <t VPO =INQO(12),

one finds

dzze“sz/’=@(—§logt+log2—-1+J§
Q, ’

—log(1 + Ji)) + 0t =9,

dz8e=%""'=O(tlog 1),

@€

and concludes with (15), (16), (20), and (21):

d?*z G, (t|zz)

Qe
=M———l—((e— Diogt+log2 —1+2
411t 8wt
—log(1++2))+ 0(t<*), \0. (26)
Together with
f d’z G, (1 |zz)
nﬂ{0<x<’(|46)/2}
(1-—-¢€)/2
_000x<t T L o -, N0, @D
47t
Eqgs. (25) and (26) establish Theorem 3. O

IV. RESULTS FOR REGIONS WITH CUSPS

In Ref. 2, Stewartson and Waechter considered a class
of regions  with cusps: for a,k, ,k,€R | let

QN{x>0} = { — k, (x — a)"<y<k, (x — a)*,a>x>0}.
They gave the contribution resulting from the vicinity of the
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point (a,0) using exactly Van den Berg’s approximation, but
without error bounds.

Theorem 4 will give their expansion for the partition
function including error bounds, and Theorem 5 will give a
similar result for a larger group of systems. Since the proofs
of Theorems 4 and 5 follow exactly the lines of Sect. III, we
omit them and state merely the results:

Theorem 4: Let L CR? be bounded, and for some
abeR |, I0N{x<a/2} be smooth, R-smooth and
QN{x>0} = {(x,p)|0<y<b(a — x)* AO<x<a}, u> 1.
Then for t\,0:

O(t) =Tre” _19l LY
47t 8\t
T4+ 1/72u)¢01 + 1/,
T #)+0(t‘f), Ve>0.
Qb VFe V2V
(28)

For the proof of Theorem 4 one requires

< w 2t
d __-i'.._)
J; xnz=:1 eXp( bz(C—x)z"

___bc"“/(,u+l) _c

1/2u), — Vn
1)
47t 2 2w 2 2u
1

x;(l +;)+0(t'), O, (29)

which holds for 4 > 1 and any r<R, and can be derived with
the help of Eq. (13). Equation (29) is used in connection
with (10) for the integration in the vicinity of the point
(a,0). Theorem 4 agrees with a result from Ref. 2 with
4 = 2n, neN, apart from the error bounds. These bounds
permit the extension of the Theorem to a larger group of
systems:

Theorem 5: Let 2 CR? be bounded, dQN{x <a/2} be
smooth and R-smooth and QN{x30}={(x,
P)|0<p<fix) AO<x<a}, where £:[0,a] - R, is strictly de-
creasing and convex with f(x)=b(a—x)*

+ O((a — x)**7) and S'(x) =pb(a—x)*~"!
+ O{(a—x)***"1) (u>1, a>0), then for £\\0,

@(r) = Tre® = 19U _ L(3D)
41t 8\t

LU+ 12060 + U

47T/.lb I/yt 172 -172u

+ O(g(n), t\0,

where g(¢) =t ~° (€>0) if | — (a+ 1)/2u <0 and g(¢)
= —072- @+ D72 gfge.

The proof follows again the pattern of Sec. IIL, if (29) is
replaced by

N & 27t
5 e - 25)
.[) xg. exp fix)
=fadx (&_)___1_) +
0 47t 2

Xé‘(l +_1_)+0(t(a+l)/2y), t\o'
1

12up — 1/p
t___b__ [‘(i + .L)
2u\T 2 2
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V. APPLICATION: ASYMPTOTIC EXPANSION FOR
(MA))

In general, N(4) does not possess an asymptotic expan-
sion for A — « (see, e.g., Ref. 16), which could be evaluated
knowing an expansion of @(¢) for £\0. Brownell'” intro-
duced so-called O bounds that lead to the following result.

Theorem 6 (Brownell): Let 0 <A, <A,<' - and N(A)

=3, i 1satisfy {7 4~ *|dN(4)| < o for some 7, >0 and
let

* k
J dN(D)e~ "= 3 (¢ 7 "c, +cilog ) + 0t "™+,
(V] g

i=1

withr, ., <r, < - <r . Then

Ny=% —*
( )_igl I"(r,+1)

X [ ~clog i + (c,- + c:(t/z(r.-) + ri))]

+5(irk+llogl)’ (30)

where 1 denotes the digamma function and O refers to “log
Gaussian error estimates”: Let F be of bounded variation
over every finite interval, where it is continuous and

S&y "|dF(»)| < + » for some r,>0; let either f.(y)
=y logyorf,(y) =y,r>0, then

F(y) =O(f,(nk>
Vp>03M,: fw exp( — %pz(log ;lj)z) dF(y) ‘ <M, f, (v).
b

{We have added the case ¢/ #0, which can easily be handled
mimicking Brownell’s original proof.)
If an averaging procedure (- - -) defined by

* 1, v\?
exp| ——p (log=) JdF(»)[, (31)
o 2 y
is applied to (30) the O estimates can be replaced by ordi-
nary error estimates:
k A i

V() = 12'1 L(r,+1)

><[ —cilog A + (ci + c;(:ﬁ(r.-) + ri))]

+ 04" ' logA)}, - co.

(F(v)): =

(32)

For the significance of the “smoothed” level density

d (N(A))/dA seeRef. 1, Chap. VII. For its application in the

field of chaotic systems see Refs. 18 and 19. Applying (31) to

the system in Theorem 1, one finds

(N)) ~ Alog A
47

+ 8- T rouiegay,
47 4r

(33)
for A — «, where
a=2y—log(2m)) = —2.5213---,
b= —Hr"/T*(}))= — 1.6944--- .

The staircase function for the quantum billiard in the region
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{0<xy<k}NR?_ can be found by replacing A by kA in the
rhs of Eq. (33). For example, for k =2,

(Nkzz(,{)>=/llogi+ (a+log2)/1_b\/§‘//l—
21 27 47

L O logd), A—co. (34)

Berry® pointed out that the leading term in the last expres-
sion coincides with the first term of the asymptotic expan-
sion for the number of the nontrivial zeroes of the Riemann
zeta function with imaginary part less than A:

<NRiemann (A)> =M
27
27
(35)

The lack of time-reversal invariance, which a hypothetical
system whose eigenvalues are given by the imaginary parts of
the Riemann zeroes is believed to be subject to (see Ref. 8),
could be enforced upon a billiard system by introducing a
magnetic field, thus establishing an Aharonov-Bohm bil-
liard (c.f. Ref. 20). Note, however, that the terms we deter-
mined are not affected by a magnetic field of the Aharonov-
Bohm type, i.e., the above formulas also hold for Aharonov-
Bohm quantum billiards.
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APPENDIX
In Theorems 1 and 2 the integral

H, =J dx(JT+x 2#¥D _1)
1

is required. It can be evaluated in terms of a hypergeometric
function:

B, = | ax(TF=777 - 1)
1

=1- 1
4+ @+ 1 x”“\/'_""_—r”-?—l
_I—J—+ v _dz % _ L -wiw+DI-1
Ji+z
=1— +
V2 2/3
1
SR IR
2 ) 2+ﬁ +B
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with f=u/2(x + 1) (formula 3.194.1 in Ref. 21). If
p=1ie,B=14

4
- ) ) ety )
2 4 ra) r'Hry)
2 3
2 +—
r“¢) 2
(cf. Ref. 14, p. 40) and therefore
H =1- 2(17"/2/I‘2(§)).
Ifpus#1:

1
F - —1
2 1(2 3 —+ 5= +ﬂ )
21/2+BI‘( +B)
(Ref. 14, p. 52) and thus
H,=1-2+2""T(B+)P:

/A0

1325 (\2).
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Exact solution of the n-dimensional Dirac-Coulomb equation

M. K. F. Wong
Fairfield University, Fairfield, Connecticut 06430
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An exact solution of the n-dimensional Dirac—-Coulomb equation is obtained with the radial
wave function containing only one term of a confluent hypergeometric function. It is of the
same form as the solutions to the Schrodinger and Klein—-Gordon equations with a Coulomb

potential in #» dimensions.

I. INTRODUCTION

It is clear that the radial solutions of the three-dimen-
sional Schrodinger, Klein-Gordon, and Dirac equations
with a Coulomb potential are of the same form, and can be
treated in a uniform way.! The purpose of this paper is to
show that the n-dimensional Coulomb problem for the three
equations retains the same property. The solutions to the n-
dimensional Schrédinger and Klein-Gordon equations with
a Coulomb potential have been obtained by Nieto.? We shall
show in this paper that the n-dimensional Dirac—Coulomb
equation has an exact solution, which is, moreover, in the
same form as the Schrédinger and Klein—Gordon equations
for the radial wave function.

Aside from the theoretical significance of the result,
there is at least one application for our result. This is the so-
called large N method. In the realistic three-dimensional
case, if the potential is other than Coulomb, but (is) say,
spherically symmetric, an exact solution may not exist in
analytic form. However, it might still be possible to calculate
the eigenvalue of E by the large N method.?

To extend the Dirac-Coulomb equation from three-di-
mensional to n-dimensional space, we follow mainly the
structure set up by Joseph* and Coulson and Joseph.® They
obtained the necessary quantum numbers to label the #-di-
mensional Dirac—Coulomb equation, but did not obtain the
wave function solution explicitly. We complete their work
by using the transformation S, which in the three-dimen-
sional case was obtained by Biedenharn,® Wong and Yeh,’
and Su® to solve the Dirac-Coulomb equation.

Il. n-DIMENSIONAL DIRAC-COULOMB EQUATION AND
ITS SOLUTION

The n-dimensional Dirac—-Coulomb equation we wish to
solve is

n ZeZ
Hy =|cp, zpiai,n+l +P3mc2_“"'— ¥,

i=1

2.1

where we have put 7 = 1. In what follows, we use mainly the
notation of Joseph* and Coulson and Joseph.®> Let

o; = — (i/2)[B:B]> (2.2)
with
BiBj +Bjﬁi = 25,‘,'- (2.3)

The n-dimensional space is separated into “spherical”
coordinates with 7 the radial distance and (» — 1) angular
variables ,, a,,...,a,_,. We have
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x, =rsing,_, ' 'sina, cosa,,

x, =rsine,_,'*sina,,

n—1

x; =rsina,_, ‘cosa,,

X, =rcosa, . 2.4)
From (2.4) it is easily seen that
X +xi 4+ xi=ri (2.5)

As usual, we define the orbital angular momentum .#; to be

Ly =X = %Py P = E (2.6)

x;

They form the generators of SO(n). We select the represen-
tation with one number only in each row of the Gel’fand
pattern, labeled by ¢, for SO(n), etc. Then each state in the
irreducible representation of SO(n) is completely specified
by (£,,¢, _ 15--ut5st3 ), With £, = integers and ¢,,, m>3 non-
negative integers, ¢, >¢,, _,>»|¢|. The Casimir invariant
for SO(n):27 ;% has the value &, (¢, + n —2). The ei-
genfunctions of these irreducible representations are the
generalized spherical harmonics, which can be found expli-
citly in Alcaras and Ferreira.’

The next step is to choose the correct invariants in the n-
dimensional Dirac-Coulomb equation so that the labels are
easily identified corresponding to nonnegative integers,
£yl _ 13- €tc. (except £, ). This is done by working with
the invariant K, :

K,=p,(L, + (n—1)/2), Q2.7
where
L=73 L, (2.8)
m=2
m-—1
Lm = 2 a-im‘?im' (29)

i=1

It has been shown by Joseph* that the Casimir invariant

£1=3 72
i<j
is equal to
F2=L, (L, +n-2). (2.10)
However,
Lr=4(4+n=2), (2.11)
therefore,
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L, =¢, (2.12)

or
— (4, +n—2). (2.13)

The eigenfunctions for the angular variables in the
Dirac-Coulomb equation corresponding to (2.12) and
(2.13) are denoted by ¢ and ¢‘*, respectively. We shall
show that these are the wave functions used by Joseph.* But
first we shall add another interpretation for these wave func-
tions as follows. From (2.7) we have, using k, as the eigen-
value of X,

k2= (L,+ (n—1)/2)% (2.14)
If we use (2.12) we have

k2 =(¢4 + (n—1)72)% (2.15)
If we use (2.13), we have

k2=[—-¢ —n+2+ (n—1)/27)?

=[(64H =1+ (n—1)/2]2 (2.16)

When 2 = 3, we have /= j + @/2 and

ky=0(+14) =a(—d/2+)). (2.17)
So (2.15) corresponds to® = — 1, i.e.,

ky=—(/+1), (2.18)
and (2.16) correspondsto@ = + 1,1i.e.,

k=(-1)+1=¢ (2.19)

In (2.15) and (2.16), we can take ¢, to be a nonnegative
integer, thus obtaining, from (2.16),

k,=(4—1)+(n—-1)/2, (2.20)
and from (2.15),
k,= —[6+(n—1)/2]. (2.21)

This will agree with the conventional labeling for the n = 3
case, where &= + 1, with = +1 for (2.20) and
@ = — 1for (2.21). In the n-dimensional case, according to
Joseph, we use ¢‘“ and ¢® with ¢® having “¢, — 1" and
#® having “Z,” as labels. So the (a) and (b) states differ
from each other by one unit of angular momentum, with ¢’
having a value one unit larger than ¢‘®. This classification is
in agreement with the one given by Joseph.* What we have
added is that instead of (a) and (b), wecouldused = + 1
with (a) corresponding to @ = + 1 and (b) corresponding
tow= — 1.

The corresponding coupling through the generalized
“Clebsch—Gordan” coefficients is given by Joseph as fol-
lows:

P (@), _ 1)
= (24, +n—2)"‘/2{(/n +4,_,+n—-2)"

Xtsi (@ )P (@15 _3)

+(4 -4 )l/2¢f,,/"_l+1 (a,_,)
x¢‘,f’_l(a1,...,an_2)} , (2.22)
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(@)@ _1)
=24, +n-2) -‘/’{(4 =l ), (@, 1)

X¢§f’_l(a,,...,a,,_2) —(+4_, +n—2)2

X'ﬁ(;,,/’,,_l+ 1 (an— 1 )¢§f?_,+ 1 (al sees@p_ 2 )] s
(2.23)

where ¢, . (a,_,) is part of the spherical harmonics ob-
tained, for example, by Alcaras and Ferreira® and denoted
by them as G.

Incidentally, in the n-dimensional case one can also de-
fine an equivalent total angular momentum operator

Then,
Ji=Y 72 (2.25)
i<j

is a constant of the motion. However, its eigenvalue is com-
plicated [see (2.26) below] and thus we shall not use it. For
the state (b), we get

J2=024 ¢ (n—1)+n(n—1)/8. (2.26)

In what follows, we shall write the eigenvalue of K, as

kn = kn (a’))(;. )
{ —[4+(r=1)/2], (2.27)

I+ G -D+ =122} (2.28)
with @ = + 1 corresponding to the state (a) in (2.28) and
@ = — 1 corresponding to the state (b) in (2.27).If ¢, =0,
then only the (b) state exists; the (a) state does not exist. An
irreducible representation is then completely specified by the
two quantum numbers ¢, and @, where ¢, is a nonnegative
integer and @ is either + 1 or — 1. Then the solution of the

Dirac—Coulomb equation (after the transformation §) can
be written as

_—( IR(N$, 5 Qs _1) )
B QN4 19 5(a@rsna,_y) ’

where ¢,  is either ¢{* for & = + 1 of (2.22) or ¢¢” for
@ = — 10f(2.23). Let

(2.29)

~ An+l

l=
ST W
n

A, = 2 XiTint1-
i=1

(2.30)

(2.31)

The Dirac—-Coulomb equation in spherical coordinates
is

(_t9___P3K,. —(n— l)/2)
ar r

+p3mc2——¥]1/r (2.32)
The transformed wave function is
(2.33)

¥ =59,
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where

S = cosh 8/2 — p, (sinh 8/2)4, , ,, (2.34)
with
tanh § = — Ze&*/cK,,. (2.35)
It is then easy to calculate
Ey =SHS ' ¢/, (2.36)
obtaining two coupled equations for R(7) and Q(7);
M M
& ‘2] (R('))=E(R(')), (2.37)
M, M, ar) a(r)

X 2
M,, = mé cosh 0+c[sinh o(i+£”_‘_”_)] _Ze
dr 2r r
(2.38)

M, = — [mc2 sinh 6+c[cosh 0(i+ (n— 1))
dr 2r
=
r ?

. K
M, =mc2sinh0+c[cosh0(;;£+ (n 1)) + X ] ,

(2.39)

r 2r r
(2.40)
My, = — {mc2 cosh 6 + c[sinh 6 (i + i”_‘_l_’)
dr 2r
+ _Z_ei ] . (2.41)
r
Defining
Vo= (K% —Z%*/*)"7?, (2.42)
we obtain
) 2
c[i+ (n— 1)]R+(cwr..)R_(Eeaze )R
dr 2r r cYn
- (mc2 + —El‘—') ) (2.43)
c[i’_+ (n— 1)] Q_(cwn>Q+(E52e2)Q
dr 2r r Y
= (mcz— Elk"l)R. (2.44)
Vn

From (2.43) and (2.44) we obtain the second-order
equations for R(r) and Q(r),

d* (n—=1)d  E*—m** 2EZ&
[a’r2 + r dr+ c? + cr
(V:+ @y, —n/4+n—3)

2

r
2 _ 2 24 2
[j_+(n l)_ci+E m?c +2EZe

dr? r dr c c’r

]R(r) =0, (2.45)

(2 —ay, —n*/4+n—3)

’.2

To solve for R, let us change the variablc from r to p,
with

] Q(r)=0. (2.46)
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p=2r(m’c* —E*»)'*/c=2ur. (247
We then have
[Lal=bd 1, b
dp2 p dp 4 pc(m2c4 . E2)1/2
(va + @Y, —1"/4+n—
_ oy . 3]R(p)=o. (2.48)
P

Equation (2.48) is entirely similar in form with the radial
equation of the Klein—-Gordon equation with a Coulomb po-
tential in #» dimensions. According to Nieto,? Eq. (5.4), this
equation is

> (-1 d 1 4
(dp2 + P dp 4 + p
_las+ "p‘zz) “7’2])R(p) —0. (2.49)

Nieto has obtained the solution for (2.49) in terms of gener-
alized Laguerre polynomials, which are also equivalent to
confluent hypergeometric functions. Thus in order to obtain
the solution of (2.48), we only have to translate Nieto’s no-
tation into our notation. This is done as follows:

Nieto’s notation our notation

¢ = Vs
A -~ EZeé*/c(mPc* — E})\?,
yz - ny, — 27’1: _5771
+n*/4—n+}
(always >0 for n>3).
(2.50)

Thus Nieto’s s, which is defined as
s=— (n—=2)2+{[¢/+ (n=2)2)*— ¥},
(2.5

is defined in the same way by us, with the translation given
by (2.50).
Thus the final expression for R(p) is
R(p) = Nexp(—p/2)p’L &+~ ¥ (p),

where

(2.52)

n' = non-negative integer=A4 — (n —1)/2 — 3,
2.53)

and the generalized Laguerre polynomial is connected with
the confluent hypergeometric function as follows:

N & (nta (—1t)Y
Lf‘)(’)‘z(n—j) J!

j=0
n+a
=( -: )lFl(—n,a-}—l,t).

The expression for Q(p) is obtained from R (p) by changing
D0 — o.

From (2.53) and (2.51), one obtains the energy spec-
trum for the bound state of the n-dimensional Dirac—Cou-
lomb equation:

(2.54)

Z%*
n' +4+3/2+,

. —1/2
E= :tmcz[l-}- )2] ,(2.55)
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which agrees with Coulson and Joseph using the second-
order Dirac—-Coulomb equation in » dimensions.

The normalization constants are obtained as follows.
First we write

R(r) =C(S, )e #%°+

X]Fl(Si —A'+(n_l)/2,2's':t +n—l:p)’
(2.56)

Q(r) = C(S3 e P%p°F
X Fi(S; —A+(n—1)/2,25; +n—1,p),

2.57)

where
S_ =y, —(n=3)/2, (2.58)
})

C(s, )=

S, =v,—(n—1)/2. (2.59)
The upper sign is for @ = — 1, the lower sign fora = + 1.
By putting r = 0, we obtain from Eqs. (2.43) and (2.44)
the following relation:
(mc* + BE\k,|/v,)
2uc(2y, +1)
The angular parts of the wave functions are already nor-

malized. The radial parts are normalized according to the
following condition:

CS_)=C(S,)

(2.60)

J‘w (R3(r) + QM) 'dr=1. (2.61)
0

From (2.61) we obtain

In deriving (2.62), use has been made of the following iden-
tity:

(W) (2 — A1) =mic* — E*k2 /. (2.63)
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Extended Hilbert space approach to few-body problems
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A general formulation of the quantum scattering theory for a system of few particles, which
have an internal structure, is given. Due to freezing out the internal degrees of freedom in the
external channels, a certain class of energy-dependent potentials is generated. By means of
potential theory, a modified Faddeev equation is derived both in external and internal
channels. The Fredholmity of these equations is proven and this is what provides a sound basis

for solving the addressed scattering problem.

L. INTRODUCTION

This paper is concerned with the treatment of low-ener-
gy quantum scattering for few particles with internal struc-
ture. Problems of this kind arise in describing hadron-ha-
dron as well as nucleus-nucleus scattering'~> and similarly
in constructing NN potentials in the baglike approaches.®
There exist, however, no appropriate mathematical methods
which may be applied for a rigorous study of the wavefunc-
tion properties. Already in the two-body problem there is no
self-adjoint (s.a.) Hamiltonian, which could be generated by
a time-dependent unitary group of operators responsible for
the evolution of the system. In the three-body case, the origi-
nal Faddeev equations are also not directly applicable due to
the lack of an underlying s.a. Hamiltonian.

In the present paper, we overcome these difficulties by
means of the extension theory using an auxiliary Hilbert
space corresponding to the internal degrees of freedom.”° In
the special extended Hilbert space we construct the total s.a.
Hamiltonian. After eliminating the internal channels, we
propose modified Faddeev equations for the components of
external-channel Green functions. Using well-known meth-
ods,'>'" we prove that these equations represented in config-
uration space are of Fredholm type. Due to this property the
equations provide the justification of treating the three-body
scattering problem for particles interacting via energy-de-
pendent potentials. Our modified Faddeev equations in dif-
ferential form may also be used in an efficient manner for
numerical calculations.

1. TWO-BODY PROBLEM

We will consider here the following special case of the
general situation.”'* Let us assume that the dynamics of
the external degrees of freedom are given by the s.a. Hamil-
tonian A <, which is defined by

hou={(— A+ v(x))u (1)

in the Hilbert space #™* = L 2(R?). The potential v(x) rep-
resents a so-called peripheral interaction (e.g., a meson-ex-
change potential) of strongly interacting particles and it will
be assumed to decrease rapidly and be sufficiently smooth.
We shall also separate the two-body configuration space
R? into the two domains 0 * such that R* =Q~UQ™*. Let

® Permanent address: Department of Mathematics, Arkhangelsk Institute
for Lumber Technique, Arkhangelsk, USSR.
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Q™ be the part of the space R* where the coordinate x is
bounded. Physically, the compact domain 2~ may be inter-
preted as the region of reaction (or where clusters overlap)
and the domain 0+ = R*\ Q™ as the region where the parti-
cles move “asymptotically free.”” The common boundary y
of the domains 2 * will in this situation be a surface, where
the phase transition between internal and external channels
takes place.

In our model we shall restrict the s.a. Hamiltonian 4 ¢
to the symmetric operator h, with the domain
D (hy) = Cg,, where C, is the class of infinitely differen-
tiable functions, which vanish together with all derivative in
the neighborhood of the surface y. Then the Hermitian con-
jugate operator A} has a nontrivial boundary form J**,
namely,

J*(uw) = (hFuw) — (u,hEw)

= lim U- dS(d,uw — ud,w)
6-0 7,:

«j ds(d,uw — 8,,‘u‘)u)] , 2)
123

where d, is the normal derivative on the surfaces
vy ={xeQ*: dist(x,y*) =6}

Now we assume that the dynamics of the internal de-
grees of freedom without connection to the external channel
= is given by an arbitrary s.a. operator 4 acting in some
Hilbert space #". In order to “switch on” the interaction
between channels 7" and 7", one must restrict the opera-
tor 4 to some symmetric operator A, and construct all s.a.
extensions of the operator A, @® 4, in the direct sum %™
® J7™. The important question of the model is the follow-
ing: How to construct the boundary form J ™ for an arbitrary
s.a. operator 4 ? The general answer was obtained in Ref. 7.
Namely, the symmetric restriction of the Hamiltonian
should be made in terms of its Cayley transform
U= (A4 —i)/(4 + i). For this purpose let us consider the
special isometric restriction U, = U } F"OU *0, where Ois
a generative element® of the operator 4. The symmetric re-
striction 4, can be obtained as the inverse Cayley transfor-
mation of the isometry U,. Hence, the operator 4, has defi-
ciency indices (1,1) and the domain & (4 %) of its adjoint
can be described in terms of ven Neumann’s theory?:
DAY =D (A4,) + L (6,U*0); here A, is the closure of
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Ay and .Z (6,U *0) is the span of deficiency elements 8 and
U*6. 1t is convenient to introduce some new basis in .7:
w* =§(U*d 4+ ), w™ = (1/2i) (U *6 — 8).Inaccordance
with von Neumann’s representation, an arbitrary vector u
can be decomposed as

u=u+Etwt +EwT, ueD(AY), D (4,),
3

where £ * (u) are the so-called boundary values of element
(Ref. 7). In terms of £ * the boundary form of the operator
A ¥ may be written as

I™u, ) ={Ad3u,f) — (w,A8f)

=ETWET(S)—ET W ETS). (4)

It should be noted that (4) is an abstract variant of (2).

After the preparation of the boundary forms J** and J ™"
of the operators 4 ¥ and A ¥ the next step is to construct an
s.a. extension & of the operator h, ® 4, acting in the direct
sum 5#** @ /™", In accordance with our general method one
should impose on ¥ such boundary conditions that make the
sum of the boundary forms vanish, i.e., J= 4+ J™ =0,

It can be shown that all such nulllifying conditions may
only be of two types, namely:

ut ¢)+ anu+
a,u" & - -
)= N 5
et Cp ™) ™) ag )\ £~
and
a"u-f' ¢-’- u+
u- _ © ¢’_ anu__
£ — (") —CpT) e\ E-
(6)

Here, u* and d,u * areboundary values of u and d,, 4 on the
bilateral surface ¥ * and the functions ¢ *€L *(y* ) are pa-
rameters of the model; they generate functionals

(u,p *) = dSug@ *, uel?(y*). 7N
y +
Finally, ©is a 2 X 2 arbitrary s.a. matrix given on the surface
y and a; is an arbitrary real number.

Let us denote by u,, o = 0,1 the external (¢ = 0) and
internal (@ = 1) channel wavefunctions. Then we can study
their properties on the basis of the two-channel Schrédinger
equation:

(h—2)% =0, xeR*\7y,
U = (upu,), (8)

with the appropriate boundary conditions (5) or (6).

Let us suppose now for simplicity that the external
channel wavefunctions u, are smooth on the surface v, i.e.,
ugt = ug = uy and that the matrix © has the special struc-
ture & = (9 o); let us also put a, = 0. In this special case
the boundary conditions, which one should add to (8), are of
the form

[Bnu], = — @&~ (uy), (9
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§ T (uy) = (upp),
where [d,u,], =d,u; —d,us" andp=9p " =¢™*.

We want to emphasize that the operator A, which is the
total Hamiltonian in the two-body system with internal
structure, is an s.a. operator and hence the boundary value
problem (8),(9),(10) is mathematically correctly defined.
It should also be noted that in our model we are able to
simulate an arbitrary complicated internal structure of par-
ticles due to the general nature of the internal s.a. operator A4.

On the other hand, one can now operate in the external
channel 7 only. For this purpose one must solve the
boundary conditions (9),(10) by excluding the internal in-
gredients & * (u,). This procedure is based on the following
linear relations’:

§T=A2)¢T, (1D

where A(z) is the Schwartz integral of the spectral measure
of the s.a. operator A4,

AQ2z) =((I+24)(4-2)7'6,68)

(10)

[ 144z

.

Taking into account (11) we obtain from (9) and (11)

the following energy-dependent boundary conditions in the
external space 77"

[Butio], = — A2 (upp). (13)

In accordance with (8) the external component u,
obeys the equation

d(E{6,0). (12)

(14)

In order to obtain the differential equations in the whole
configuration space R’ it is convenient to use the quasipoten-
tial approach (see, e.g., Ref. 11). Let us consider the quasi-
potential w(z) acting on the function u in accordance with
the rule

w(z)u= —8,A(2)p (u,p). (15

Here, 6,4 is the distribution, usually called the simple lay-
er,'* that acts on the set of sufficiently smooth functions f in
the following way:

(Ou.f = [ dsu.

In terms of the quasipotential w(z) the boundary-value
problem (13) and (14) may be written as

(hg —2)uy=0, xeR’\y.

(16)

(7" + w(z) — z)uy =0, (17)

where the variable x now runs over the whole configuration
space R>.

One can show that (17) is equivalent to the boundary-
value problem (13),(14).

At the end of this section we add the following remarks.

(1) As it was stated above, a mathematically correct
formulation of the two-body problem with energy-depen-
dent interactions can be achieved only in terms of an s.a.
operator 4 acting in the sum #** @ 77" of internal and ex-
ternal channels. On the contrary, there exists no s.a. Hamil-
tonian corresponding to (17) or, what is the same, to the
boundary-value problem (13),(14). This means that in
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terms of the external space 7" only the well-defined total S-
matrix cannot be constructed.

(2) Asit follows from (12) and (15), the energy depen-
dence of the potentials cannot be arbitrary. It is given by the
Schwartz integral A(z), which is real on the real axis and is
an analytical function on the half-plane Im z> 0 with the
positive imaginary part Im A(z) > 0. It can be shown that
such kind of interactions ensure the analyticity and unitarity
of the appropriate total scattering matrix.

(3) In our model the quasipotentials w(z) are separable
of rank 1. The generalization to any arbitrary rank of w(z) is
trivial. For this purpose one should increase the dimension
of the deficiency subspaces N = {6}, N* ={U*8} and
change in a self-consistent way the functionals @, {*,@ ) by
arbitrary bounded operators B,B *.

lll. THREE-BODY HAMILTONIAN

We consider in this section a system of three particles
having a nontrivial internal structure. To describe this sys-
tem, we use in the external configuration space R usual rela-
tive coordinates x,, y,, @ = 1,2,3, which we combine into
the six-vector X = x, oy, (Ref. 15). Every pair x,,,p, fixes
an orthogonal coordinate system in R.

LetT', =y, XR; bethecylindersinR®andI'=U T,,.

a
An example of an external configuration space (for the one-
dimensional case) is represented in Fig,. 1.

A total s.a. Hamiltonian H governing the dynamics of
internal and external degrees of freedom will be an impor-
tant object in the three-body analysis.

We start by considering the two-particle Hamiltonian
H, in the six-dimensional external configuration space:

Hy=h,el, +I,8(—A,). (18)

Here, h,, is the s.a. two-body Hamiltonian defined in Sec. II,
I, and I, are the unit operators, in the spaces L 2(Rj’,a ) and
K, =T @ X, respectively, and — A, is the Laplacian
defined on its natural domain W3 (R; ).

The operator H, is essentially s.a. on the domain

D(H,) =D (h,)e Wi(R)). (19)

The closure H,, of this operator is the s.a. operator, which
will be denoted by the same symbol H,,.

The domain & (H, ) also may be described in terms of
boundary conditions. Namely, let % = {ug,u,}eZ (H,).
Then the external component u, is a W3 smooth function
outside the neighborhood of T, continued on I',,. The inter-
nal component u,e9y =#% ® L*(R} ) can be decom-
posed into the sum

Uy =i, +EF OV IWS +E5 W)W, #,eD(HE),
(20)

where w* are the deficiency elements'? of the symmetric
operator A, which is the restriction of the s.a. operator 4,
and ‘

(21)
The functions % €% (H ) satisfy the boundary conditions

Hr =4, 8l, +1,8(—A,).

ay
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FIG. 1. External configuration space for three identical particles.
[anu()] r, = —¢a(xa)§‘z-(ya), (22)
§a Ua) = (Up@a) (¥a), (23)
where
(40,00 ) (V) =f dx, uy(X) @, (x,). (24)
Ya

It should be noted that the boundary conditions
(22),(23) are essentially of two-body character [see (9) and
(10) ]. The only difference is that the £ £ (y, ) are now func-
tions of the variable y,€R; .

We are now ready to construct the total three-body
Hamiltonian H. Let us consider in the space

3

$=L*(R%)e I ofl

a=1

symmetric operator H,,

('— AX +Zva (xa))u()’
Hivy

Tl

a=123,
on the domain

D(Hy) =CF(RA\T) oS 0 D(HD).

Any s.a. extension H of the operator H,, is a total three-body
Hamiltonian describing the whole dynamics in both external
and internal channels. In accordance with the von Neumann
theory'? all such extensions can be obtained by the extension
of the operator H, on its deficiency subspaces. So we shall
extend the domain & (H,) to the linear set 2 (H,) in the
following manner:
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ug=1ilo+ 3 Ro( — )pg,

D (H,) = i1,eC & (R\T), (26)
U, =, +EJw +E;w;,
| EFeWi(R;). (27)
Here, Ry(z) = (H* — z) ~'is the resolvent of the s.a. oper-

ator H**= — Ay + 2Z,v, and p, are the densities of the
simple layer potentials given on cylinders I, @ = 1,2,3. The
operator H, on the domain & (H ) obtained in this way is
the nonsymmetric restriction of the adjoint operator H%.
Now one must restrict the operator &, to some symmetric
one. For this purpose it is sufficient to impose the boundary
conditions (22),(23). In terms of the densities p, these con-
ditions may be written as

pa(X) = —¢a(xa)§—(ya)s
3
g:(ya) = < z RO( - 1)Pg;¢a>(ya )
B=1

(28)

(29)

As a result we restrict the domain & (H,) to the linear set
2 (H) by means of conditions (28),(29). The symmetric
operator that is such a restriction of H, on the domain
2 (H) will be called H.

Let us now collect the important facts about the opera-
tor H.

Theorem 1: The operator H on the domain

PH), PH) ==L R)eY H

is symmetric and bounded from below.

The proof of this statement is given in Appendix A.

The last step is now an extension of the symmetric oper-
ator H to the s.a. operator H obeying the following condi-
tions.

(1) On the domain & (H) the translation-invariant
boundary conditions (22} and (23) must be kept.

(2) The Hamiltonian H must be bounded from below.

For this purpose we shall choose the Friedrichs exten-
sion H of the operator H (Ref. 13). On the domain & (H),
which can be described as usual,'? the action of H is given by
Hu,,
— A, u, + A i, — LW+ 6w,
U = (Upu,), a=123,

with the boundary conditions (22),(23).

H% = (30)

1V. RESOLVENT EQUATIONS

This section deals with the Fredholm-type equations for
the resolvent R (z) of the s.a. Hamiltonian H. As in the case
of energy-independent interactions,'® these equations pro-
vide the basis for the three-body scattering problem.

All the results of this section can be extended to the N-
body case for arbitrary N.

First we shall derive differential equations for the resol-
vent components R, (z) corresponding to the decomposi-
tion of § into the sum (24),
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R(z) ={R,,(2)}, ab=0,1,2,3. 31

Here the indices a,b stand for the external (a,b = 0) and
internal (a,b = 1,2,3) subspaces = L?(R®) and $,
a=1,273.

Because R(2) is the resolvent of the s.a. operator H it
satisfies the usual relation

R 7, (2) =R, (D). (32)
We shall introduce the following notations. Let Fbe an

arbitrary element of § and % = R(z)F ie, F={f},
a=0,1.2,3,

ua = 2 Rab(z).fb' (33)
b=0
Then due to (27) and (33) one gets
3
=3 4@ f a=123 (34)

where & % are the operators that act from $*in L ?( R3 ) at
b=0 and from §7 in L*(R} ) at b #O0. The relation (34)
can be considered as the definition of these operators.

Let Ra » (Z) denote the operators

Rosfy = (Roy — w7 &2y —ws € 3) [
a=123, b=0,123. (35)
Then using the identity
(H—-2)R(2)F=F, (36)

one can obtain the set of equations for the kernels of the
operators R, (z) and & 3 (2):

(H® — 2)R,, (2) = 8y, 1,, (37)
AR, —w &L +wr € — (A, +2)R,,(2) =8,,1,,
(38)

with the following boundary conditions:
[2. ROb]r = — @& as (39)
Eap = <R0b’¢)a>ll‘,,' (40)

Equations (37) and (38) representing the set of differ-
ential equations for the external R, and internal R, com-
ponents of the resolvent R(z) serve as background for the
construction of the Faddeev equations.

We shall rewrite the conditions (39) and (40) in terms
of the internal Hamiltonians 4, . For this purpose we use the
relation:

ga—b' =Qa(2)g;;' +6ab<(Aa —i)(HZ‘—z)_'-,Ba),

(41)

which can be obtained by arguments analogous to the two-
body case’ {see (11)]. Here,

Hy=A4,8l, +I,8(—A4,) (42)

and Q, (z) is the generalization of the Schwartz integral in
the three-body configuration space:
Q. (2) =+ (A, +2)A)HT —2)7'6,,6,).  (43)

This operator, in accordance with (18), can be realized as
the integral operator having the kernel
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000 —02) === dA AL (DA (e — prz— A).
27ri L
(44)

Here, r{ (z) = (A< — z) ~'is the resolvent of the two-body
s.a. Hamiltonian 4 <; A, (1) is the two-body Schwartz inte-
gral, and the counter .% , encircles the spectrum of 4,,.

The operators & 5, can now be excluded from (39) and
(40) by virtue of relation (41):

[anROb ] r,— —Pa {Qa (2) (ROb .s¢a>

+ 8, ((4, —D)(Hy —2),6,)}. (45)
If the internal channel Hamiltonians 4, have the point spec-
trao,(4,) = {z} only, then the kernels Q, should be writ-
ten in the form
Qo e —¥ir?) = 3 (L + (226,60,

5

Xr6® (Vo — Yoz — 22), (46)

where Z ¢ are spectral projectors of the operators 4,,.
Notice that such kind of internal Hamiltonians are used

for describing internal channels, e.g., with quark confine-
ment.>®

V. FADDEEV EQUATIONS

The study of the total resolvent R(z) can be reduced to
considering the external-channel component Ry, (z) only. In
order to see this, Egs. (37)-(41) should be used. Namely, let
the component Ry,(z) be known. From (40) we can get
& & (2) for substitution into (41) to yield & (z). Then
from (38) one can obtain ﬁ% (2). It gives the components
R ,‘,f)’ (2), a = 1,2,3. Then, in accordance with (32) the com-
ponents R, (z), a = 1,2,3 will also be known. The diagram
in Fig. 2 illustrates this procedure. Thus we shall now deal
with Rg,(z) which, for simplicity, is denoted by G(z). It
should be noticed that G(z) is the so-called Krein’s quasire-
solvent'” and it has corresponding properties.

By Eq. (45) the kernel G(X,X',z) of the quasiresolvent
G(z) obeys the boundary conditions

[0,G(XX"2) ], = — @a(x,) Q. (2)(G(2) ., ). (47)
As in the two-body case, these conditions can be written
in terms of quasipotentials

1] a1 02 03

R R R R

20 31 3z EH]

FIG. 2. Diagram for the reconstruction of the resolvent components R
a,b=0,1,2,3.

abs
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W (DU =6V, (2)U, (48)

where V, (2) is the integral operator in L?(T",) with the
kernel

Va (X,X’,Z) = — @, (xa )Qa (ya -—y;,Z) Pu (x; )'
(49)
In accordance with (37), (47), and (48) we obtain the fol-
lowing equation:

3
(H°" + z W,(z) — z)G(X,X’,z) =8(X—-X").
a=1
(50)
To derive an integral equation for Krein’s quasiresol-
vent one can use the usual procedure. Namely, applying the

operator Ry(z) to (50) we obtain the resolvent identity for
G(2):

3
G(2) = Ry(2) — Ry(2) Z W, (2)G(z).

a=1
In accordance with this equation of Lippman —
Schwinger type, the operator G(z) may be reproduced expli-
citly in terms of generalized operators

M, (z) =W,(2)G(2)

(31)

(52)

by the relation

G(z) = Ry(2) — Ry(2) E M, (2). (53)

Thus we reduce the problem of investigating the quasi-
resolvent G(z) to the study of the operators M, (z).

The next problem is to derive the Faddeev equations
from Eq. (53). Applying the operators W, (z) to (53) one
can write this equation in the form

I+ W,R)M, =W,R,— W,R, Y M.
BH#a
Following Faddeev’s method we have to invert the operator
I+ W_R,. Thisinversion may be done explicitly in terms of
the two-body operator G, == (H, — z) ™', which is the re-
solvent of the s.a. operator H,, . The following formula can be
verified:

I+ W,R)W,G, = W,R,. (55)

This relation yields in a straightforward way the equations

(54)

M, (z2)=W,G,(z) — W,G,(2) z M, (2),
B#a
which have the structure of Faddeev equations.
Nevertheless, to be convinced that these equations are
the Faddeev ones, one must prove the following statement.
Theorem 2: Let i, be the densities of the simple layer
potentials M, (z) = &r p, and p = (@;,45,t3). Then the
following can be proven.
(1) Equations (56) rewritten in terms of densities x,,:

(56)

u(z) =p,(z) + B(z)u(z) (57)

are of Fredholm type and B”", n> N,,,, with sufficiently
large NV, is a compact operator in an appropriate Banach
space.

(2) Equations (56) or (57) are spectral equivalent to
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the original Schrédinger equation with the s.a. Hamiltonian
H.

The proof of the first statement proceeds in a standard
way.'®!" Nevertheless, for the reader’s convenience we
sketch it in Appendix B.

The second statement of the theorem is much more deli-
cate in contrast to the case of energy-independent interac-
tions. Namely, we must show that the homogeneous equa-
tions (57) have a nontrivial solution, if and only if zeo, (H),
where o, (H) is the point spectrum of the s.a. operator H.

Let u be the solution of the homogeneous equations

Ba(2) = =V, (2)G,(2) Y ps(2). (58)

B#a
Consider the function

Uy = Ry(2) Z.Uﬁ,
B

which is evidently the simple layer potential given on the
hypersurface I' = U, I, and hence it satisfied the equation

(H™ — 2)uy(X) =0, XqI. (59)

To find the appropriate boundary conditions one must
apply the operator 7 + ¥V, R, to Eq. (58). Taking into ac-
count (55) and the properties'® of simple layer potentials
[3.40]r, = — Ha» we find the boundary conditions

[Fntto]r, = Vo (2)u, (60)

By means of iterations of (58) one can achieve that
1o€W 3 (RO\T') bothat Im z#0and atz = E + i0, EcR and
furthermore that (uo,@,)eW 3 (R} ). Now we shall express
the internal functions ¢, in terms of the external component
u,. To this end one must take into account the representation
u,, in the form (28) and relations (22) as well as (21), which
state the connection between £ ¥ and u:

g; == <u0,¢a>) (61)

§a =0, (2)¢, . (62)
The functions #, may then be found as the solution of the
equation
( - Ay“ +Aa —Z)ﬁa

=§: (ya)wa—- _grz_ (ya)w: + (Ay"

+ 2D o WIwe + 8§ Pa)ws) (63)

By virtue of Eq. (61) the functions £ } €W3 (R} ) and
hence £, eW3(R; ). This means that % ={ugu,}
€% (H) and, in accordance with (59)—(63), % is an eigen-
vector of the s.a. operator H:

(H-z)% =0. (64)

This equation implies that % = 0 if z¢o, (H) and hence
u, = 0. In other words we have proven that Eq. (57) hasa
unique solution, if zéo, (H).

On the contrary let % be an eigenvector of the Hamilto-
nian H. Then one must repeat the derivation of (56) for
densities u, = — V,_u, which obey Egs. (58).

Hence we have proven that the Faddeev equations (58)
are “spectral equivalent” to the original Schrodinger equa-
tion (64).

Consequently, the Fredholm alternative may be applied
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to (57) and the properties of densities z, may be investigat-
ed and its completeness in the whole space 9 established
using the methods of Refs. 19 and 20.

VI. INTERNAL-CHANNEL FADDEEV EQUATIONS

In this section, we shall derive Faddeev equations for the
boundary values & 3 (z) of the resolvent components
R, (2).

First, one observes that due to the separability of the
quasipotentials ¥, (z), Eq. (56) can be written in terms of
kernels of the operators &, (z),

€ VX '12) = @ (Vo — Y2, 2)(G(2) @), (65)
which by (40), (41), and (42) are the boundary values of
R, (2). In order to obtain equations for the operators & it
is advantageous to pick out coefficients at the ¢, in (56)
using the relations (48) and (49). Due to this procedure one
gets

Ea()=D,(2)— > Dyp(¥g (2). (66)

fZa
Here, the operators D, (z) are average value of the resol-
vent

D (2) = (G, (2).,¢.) (67)

and

D 5(z) =(D , (2),@p). (68)

Equations (66) represent a set of integral equations in
internal subspaces for Faddeev-type operators & (2).

Let us note that there exists an additional effect, which
can be taken into account. Namely, owing to the separability
of the potentials V, (z) Eqgs. (66) are three dimensional in
contrast to the five-dimensional equations (56). This prop-
erty can be important for numerical calculations.

VIl. DIFFERENTIAL FADDEEV EQUATIONS FOR
COMPONENTS

The Faddeev differential equations are known to be use-
ful for numerical calculations in nuclear physics.'>*° Let us
discuss similar equations for three particles interacting via
energy-dependent potentials. For their derivation we define
the Faddeev components G “(z) of the external-channel
quasiresolvent G(z) in the usual form:

G*(2) = 8, Ry(2) — Ry(2) W, (2)G(2). (69)

By this definition the quasiresolvent G(z) is the sum of its
components

3
G(z) = 2 G*(z).

a=1

(70)

Applying the “operator” H* + W, (z) — zto Eq. (69) we
obtain the differential equations

(H+ W, (2) -2)G*(X,X',2)

=06,0X~-X")—W,(2) 2 GA(X,X'z)
B#a
to be fulfilled by the components G “(z).
By Eq. (47) the Faddeev components G “(z) obey the
boundary conditions

()
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[0,6°]r, = — 2.2 T (GB2) ). (T2)
B
Here we have used the following property of G *(z):
[anGﬁ]r"=0, a#ﬁ, (73)

which can be obtained by virtue of the usual properties of
simple layer potentials.'®

If Z is real, i.e., Z = E + i0, the differential equations
(71) together with the boundary conditions described in
Refs. 19 and 20 define a unique solution for the wave func-
tions.

The methods of Ref. 15 may be used to solve this bound-
ary-value problem numerically.

At the end we would like to point out that all results and
statements about equations for the Faddeev components
G © (z) and for the operators M, (z) can be rigorously ob-
tained only on the basis of equations for the total resolvent
R(2) or, in other words, on the basis of the s.a. Hamiltonian
H.

VIil. DISCUSSION

In this paper, we have presented a new approach toward
a mathematically correct study of the scattering theory for
few-body systems with energy-dependent potentials. The
main result is that the treating of such systems in usual con-
figuration space is inconsistent from an operator point of
view. We have demonstrated that an energy dependence of
the potentials is generated by the internal structure of the
interacting particles. This energy dependence, however,
turns out not to be arbitrary, since it is given by some class of
operator-valued R functions, including, in particular,
Schwartz integrals as described above.

The main effect incorporated in our scheme is the possi-
bility to separate the contributions from two-body and three-
body forces. We remark that also many-body forces can be
included into our consideration without a drastic change of
the formulation.
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APPENDIX A: PROOF OF THEOREM 1
Let us prove that
DH)CDHCDHY). (A1)

Let £, (y,) be smooth functions with compact supports
from L*(R; ) and define the densities p, and the functions
& o (y,) by (28) and (29).

The representations (28) and (29) give us a possibility
to reconstruct the components u,, @ = 0,1,2,3 with arbitrary
elements #,€2 (HL ) and #1,eC§ (R°\TI'). The element
% = {u,} defined in such manner, belongs to the domain
Z (H¥). To prove this it is sufficient to verify that the inter-
nal components u, €% (H ::*) or, what is the same, that the
functions £ FeW3 (R; ).
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The simple layer potential Ryp, given as a function on
the cylinder ', @ £ is not a smooth function in the neigh-
borhood of the set 'y = N, I',,. If & = B then the smooth-
ness of Ry, is defined by the smoothness of its density pg.
Nevertheless, the average (Ry03,¢., ) (¥, ) on the section {y,

= const} of the cylinder I, is the W2 smooth function. The
proof of the last statement is based on the following local
representation:

Rz (X) =1 dist(X,T5)ps(S;) + Ro(X),

which takes place for the smooth p; . Here, S is the projec-
tion of the point X on the cylinder I'; and R, (X) is a smooth
function. In fact, one must verify the smoothness of the aver-
age (dist(*,I's ),@, ) (¥, ) in the neighborhood of the set T,
considered as a function of the distance between the plane
{, = const} and the set I';. It can be done immediately.
Thus we have proved that (A1) is true.

As a consequence of (Al), the closure of & (H) coin-
cides with the total Hilbert space £.

To prove the symmetry of the operator H, one must
calculate the boundary form

I, 7)={HZ, 7Y — (% HY). (A2)

In order to estimate the contribution of the external
channel operator into the total boundary form (A2), it is
convenient to make such calculations for a system of smooth
“parallel surfaces™:

T, ={X: dist(X,[') =58}, 6>0,
o ={X: dist(X,T,) =68}, >0,

in the limit §—»0. The integration over the pieces I'j
N{X: dist(X,I",)>68} gives the sum of the integrals over
the cylinders I', when §— 0. The contribution from the inte-
gration over I'%, N{X: dist(X,I',)>6}, §—0, vanishes, if
the simple layer potentials Ry, were generated by smooth
densities. It takes place because such simple layer potentials
R p, have both uniformly bounded values and bounded nor-
mal derivatives on the surface I'y,.

Thus the calculation of the boundary form correspond-
ing to the external channel can be reduced to the evaluation
of the contribution from every cylinder I',,:

3
J(ugop) = 2 lim

a=190-0Jr{=y, xR

dS,, (8, uq0y — 9, Uglto)-
The external components uq,0,€Z ( H) satisfy the boundary

conditions (22),(23), in the form (28),(29). So, the contri-
bution into the external boundary form can be written as

li Of ds, ([3,u0]r Vo — #o[F.T5]r,)
ra

5

=f dSa[ (z R(ﬂp(vo))¢a§;(ua)
r, B

~ 3 Ry W G0 |
B

- —fdya(gma) EF () — €2 (u) EC ).

This coincides with the contribution from the boundary
form of the operator H ;* acting in the internal channel §.
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Hence, the total boundary form (A2) is equal to zero. In
other words, the operator H is the symmetric one.

To prove that the operator H is bounded from below
consider its quadratic form on the domain & (H) [We omit
here, for simplicity, all energy-independent potentials
v, (x,) in the external-channel Hamiltonian H **.]:

(HU, 2 ) = — Byugtio) + 3 (4% — A, Yug,u,).

Integrating by parts

BUY)Y = |V —ZL dS,, [ 3yt ] T

+ Z {(A a, a’ua) + “vuaHil(R;{,)} 4
(A3)
one can show that the boundary terms in (A3) can be esti-
mated by the Dirichlet form of the operators — A, and
— A, and also by the norms of the elements from the exter-
nal and internal channels.
First, let us estimate the quadratic form of the operator
A* . In the representation
e =H, +ESWF +E 7w, (A4)
the boundary values £ T are not arbitrary but are connected
by the relation

5,;(9(1,9&) = ((Aa "‘i)uayea> _é‘;‘ (Aa0a30a>'

(AS)

This formula can be derived immediately from the condi-
tion’ 8,1(4 — i)z, where 8, is the generative element of
the Hamiltonian A4, . By the relation (A5) one can estimate
the L ? -norm of the boundary vector £  :

”ga HL (R )\C [“§ +HL (R » + ||ua“\3“]'
By means of decomposition (A4) we have
||ﬁa”\3'{;‘<c [”ua”,\f;i"; + |l§zz+ “Lf(n;n) + ”ga; ”L’(R;") ]
<C [ “guj— ”L!(R;a) + ”ua ”\3'('!‘] (A7)
By the equality

A:na §aw +§a a’

and under the assumptlon that the operator 4, is bounded,
one has

(A6)

(A8)

|<Aa(, a’u >|<C[”ua| '"+||§+”L (IR] ]'

Then, taking into account (23) one can estimate the qua-

dratic form (A8) in terms of the external element
||§ a+ “L:(R;u) < “¢a ||L1(7’,,) “u()“Ll(l',,) . (A9)

Therefore,

é’;;- + luollZ=cr, )]
(A10)

By the condition (22) and the relations (A6),(A9) we ob-
tain

<c|s (lual

2<A§Ou
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<C[Z (”uoniz(r,,) + ”g;”i:m;‘!) )]

<CY (Mallf + NtollZecr,y ) - (A11)

Using the embedding theorem

1
J |uo|? dS <c(5f |Vauo|* dX + EJ |uo]* dX) ,
T

5>0, (A12)

and collecting together (A10)-(A12) we have
HZ,%)>(1 — 5C)||Vu0||i:(m

+ 2 Vi, ”ég‘ - “uonL (R
~CS el
If 6C < 1 then
(Hu,%) >max ”Huol gt z lloe, |12 .“]
= — Cll@llfa-

It means that the operator H is bounded from below. So,
Theorem 1 is completely proved.

Let us make some comments about essential points of
the proof. The most important question concerns the pres-
ence of three-body forces in the model. From the geometrical
point of view such kind forces are connected with the bound-
ary conditions, which may be stated on the manifold
I'y =N, I',. The deficiency subspaces of the operator H,,,
corresponding to the manifold I, are parametrized by sim-
ple layer densities belonging to the Sobolev class # ;"> In
order to conserve the pair character of the boundary condi-
tions (28),(29) we do not include such deficiency elements
into the domain 9 (H).

APPENDIX B: PROOF OF THEOREM 2

Let us check the Fredholm nature of Eq. (57). Al-
though the potentials W, (z) are energy-dependent integral
operators for variable y, [see (48) and (49)] the kernels
V.G, (S,X’,z) have both standard analytical properties in
the variable z and standard asymptotical behavior in the
variables S,X ', which are typical for analogous kernels in the
potential model?® and in the boundary conditions model.'®!"

The representation (18) of the operator H, ensures va-
lidity of the relation

VaGa<z>=L,ff div.g, (DK (A—z), (B
2mi J o,

where g(z) is the generalized Green’s function of the “‘opera-
tor” from Eq. (17) and V(z) is the integral operator in the
representation (15) such that

w(z) = 6,v(z), (B2)
— @()A2) p(x). (B3)

The Hamiltonian 4 of the two-particle system has both a

vix,x',z) =
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discrete and continuous spectrum. We shall consider the sit-
uation when the Hamiltonian /4 has one bound state y of
energy — x°. The corresponding decomposition of the ker-
nel vg(z) looks as follows

vg(x,x,2) = — @(xX)y(x)[(z+ x*IN,] !

+ vg°(x,x’,z), (B4)

where

d

Ni= ——[A7(2) — (€@ e.@)]].~ _ > (BS)
dz

and g,(z) = (h = — z) ~'is the resolvent of the s.a. operator
he

The decomposition (B4) leads to the following repre-
sentation of the kernel V,G,(2):

V.G, =V, Gi+V,GS, (B6)
where
V,G2(S,X"2) = — @u(So)¥a (XL)N g3 'r§?
X (Vo = VarZ + %) (B7)

and S={s,V.}, 5,€V,, V,€R, . The kernel V,G¢, de-
scribes the contribution from the continuous spectrum.

We shall need the asymptotic of the kernel V, G
(S,X',z) when x/, » oo . This asymptotic can be obtained by
the saddle-point method?' from the asymptotic of the corre-
sponding kernel vg® related to the two-body problem,

exp{ivz|x'|}

_ (+) ]
p(x) <¥,* @) 42l
(B8

vgc(x,xlyz) '~

xX'— o

Here, ¢{ "’ is the wavefunction of the continuous spectrum
corresponding to the operator 4%, p = — yzx' and
d(z) =A7"(z) — (g(D@p). (B9)

Then the asymptotic of the kernel V,G ¢, (S,X',z) when x|,
— oo looks as follows:

V(,G;(S’lez) -~ ¢a (sa)c()(z)

xexplivzL, YL .5,

X (z cos® wa,_?(’). (B10)

Here, L, is the eikonal® that corresponds to the propaga-
tion of the ray from the point {0,y } to the point {x,y,_}:

L, X)) = [1¥7+ Ga —y:)?]"> (B1D)
The function .% looks like

FulzX) = —d 7@ @), (B12)
where p, = — zX/, and

Co(z) = (1/Am)(i(Vz/2m))*?,

cosw, = |x}|/L,,. (B13)

Using the relations obtained above one can notice that
the asymptotic and analytic properties of the kernels V,G,,
coincide with those of the usual three-body problem with
energy-independent potentials.”® Hence, one can prove the
Fredholm property for Eq. (57) using the techniques, pro-
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posed in Refs. 10 and 11. Namely, the kernels ¥, and G,
have the singularities |y, — y, | ~'and |S, — S ;| %, respec-
tively. Consequently, a restriction of the operators ¥V, G, to
any bounded part of the surface I' = U, I',, leads to a com-
pact operator, because dim I', = 5. On the other hand, be-
cause of the slow decrease of the kernels ¥V, G, (S,5",z) at
infinity, the operator B(z) is not compact. However, due to
the Faddeev structure of the operator B(z), the arguments of
the kernels ¥, G, are located on different cylinders I, and
I', a# B and during the iteration procedure the products of
operators V, G, V, G, -V, G, only occur and q,
FA -

Using the representation (B6) one can pick up terms of
the following types in the kernels of the operators B "(z):

(1) The products ¥V, G¢, V.G -V, G, which
contain not less than one operator Va,G Zj corresponding to
the discrete spectrum of the two-body subsystem Hamilto-
nian;

(2) The product ¥, G, ---¥, G which contains op-
erators corresponding to the continuous spectrum only.

Due to the existence of the exponentially decreasing ei-
genfunctions y4 (xj) in the kernel ¥,G j the asymptotics of
the first-type kernels (which have V, G, and V, G, atthe
beginning and at the end of product, respectively) is de-
scribed in terms of spherical waves in R®.

The asymptotic of the second-type kernels can be inves-
tigated by the stationary-phase method.?' Due to the exis-
tence of the phase with the eikonal L, in the asymptotics
(B10) of the kernel ¥,G 5, the phase of the integrand is
defined by the sum of distances between the points located
on the cylinders T, , T, , --+, T, axes {0, }, y, €R’.

Minimalization of such a sum in the framework of the
stationary-phase method gives the length of the trajectory of
the ray that goes from the point S, = {O,y;"} to the point
S, ={0.y,,} by reflecting on the cylinders I, ,...[",
axes. As a result one can obtain the description of the asymp-
totics in terms of the corresponding eikonal.*® If such a pro-
cess is impossible, i.e., the corresponding minimalization
leads to a spherical eikonal |S|+ |S’|, the kernel
V.Gg "V, G, asymptotically turns in a product of
spherical waves in R® in variables S and .S’ when S and
S’ — oo. Maximal number NV,_,,, of possible reflections on the
cylinders axes is defined by the angles between these axes.
Thus the nth power B "(z) of the operator B(z) is a compact
operator in a proper Banach space when n> N_,,. Hence,
the Fredholm alternative applies to Eq. (57). The first state-
ment of Theorem 2 is proved.
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The low-frequency moments of the scattering amplitude are utilized in order to identify the
capacity, the center, and the orientation of an acoustically soft scatterer.

Let the closed, connected, and smooth surface .S de-
scribe the boundary of an acoustically soft scatterer, whose
exterior is denoted by V. The scatterer is excited by the plane
incident wave

(I)(r,t) — ei(k-r—wt)’ (1)

where k stands for the propagation vector and @ is the angu-
lar frequency. Suppressing the harmonic time dependence
exp( — iwt) and introducing the time-independent total
field

Y(r) =e*" + u(r), 2)

with u(r) being the scattered wave, we arrive at the follow-
ing direct scattering problem.! We need to find the field
Y(r) that solves the boundary value problem

(A+kH)¥(r)=0, reV, 3)
Y(r) =0, res, 4)
d.u(r) —iku(r) =0(1/r*), r- + . (5)

Utilizing the analyticity of the total field at the point k = 0
we can introduce the low-frequency expansion*?

W(r) = z (lk)
n=0
and reduce the problem (3)-(5) into a sequence of bound-

ary value problems for the low-frequency coefficients ®,,,

P, (r), (6)

n =0,1,2,... that can be solved iteratively. Specificly, the co-

efficient @, has to satisfy the following exterior problem:*
A®,(r) =n(n—-1)D,_,(r), re¥, (7
®,(r) =0, res, (8)

P,(r)=

n—1
(k-r)"————z +l)f|r—r|"
X8y P, _,_1(r)ds(r') + O(1/r), r— .
(9

The normalized scattering amplitude g(r,k) that appears in
the asymptotic expansion

u(r) = g(#,k) (e¥/ikr) + O(1/r%), r— + 0, (10)
and assumes the integral representation
gk = — & [ e 5 w(ryds(r), (11)
4 Js

yields the following low-frequency expansion:*

A~ © n+1
f'k Z (lk) + 2 (p (_1)p+1M(p) (l')
) (12)
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where
M2, @ = [ ¢roe, ,wase) a3
4 Js

stands for the low-frequency moment of order p generated
by the (n — p) coefficient.

The inverse scattering problem we want to consider here
concerns the recovery of information about the shape and
the orientation of S from the knowledge of the scattering
amplitude.

As it is seen from (12) all the information about the
shape and the orientation of the scatterer is hidden in the
low-frequency moments M > (r) and we want to investi-
gate the particular information carried by each one of the
first few of them.

As it is well known,>?

MP (1) =C, (14)

where C denotes the electrostatic capacity of the scatterer.
Many estimates for the capacity of a body can be found in
Ref. 6.

The low-frequency moment of the first order generated
by the &, coeflicient is given by

MO@) =f-[ L f r' a"@o(r')ds(r')]. (15)
The expression in brackets defines a fixed vector that is noth-
ing else but the “center” of the scatterer with respect to the
surface measure induced by the normal derivative of the
electrostatic potential ®,. Consequently, the center of the
scatterer is given by the vector

r, =Lfr’ 3, @, (r')ds(r'). (16)
47 s

If we choose r, to be the origin of the coordinates, then
M §V(r) vanishes. Furthermore, if the scatterer has inver-
sion symmetry (reSimplies — reS) then

M@+ (#) =0, n=0,1,.2,.., (17)
while
M (#)#£0, n=0,1,2,....

For the low-frequency moment of the second order that is
generated by the potential ®, we obtain

M@ (#) =f'®i:[71—jr’®r' a",q>o(r')ds(r')]. (18)
T Js

The quantity inside the brackets is a real symmetric tensor
and it is identified with the inertia tensor of the scatterer with
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respect to the surface measure

dmy(r) = 3, P, (r)ds(r). (19)
Consequently, the diagonalization of
M, =J—fr®rdmo(r) (20)
47 s

will reveal the principal directions of the scatterer.

Therefore, if the first three low-frequency moments gen-
erated by the leading low-frequency approximation are
known, then (i) a first estimate of the volume of the scatterer
(via its capacity®) can be found, (ii) the center of the scat-
terer can be evaluated, and (iii) the orientation of the scat-
terer (through its principal axes) can be specified. Once
these three characteristics are obtained, we choose a coordi-
nate system with its origin at the center of the scatterer and
with axes along its principal directions. This particular
choice of coordinate system could be the starting point for
applying the more elaborate inverse scattering techniques of
Angelletal.,” Colton and Monk,® or Kirsch and Kress® that
will provide the detailed characteristics of the scatterer. Of
course, the above steps require a first approximation to the
position of the scatterer in space, but this can be accom-
plished (as Sleeman has indicated'®) by using a least-
squares search!’ to localize the scatterer.

It is of interest to note that for the case of an ellipsoid
centered at the origin*

8, (0) =2 JoT — el 7

+ = -1
x dx ) . @
o x+alfx+ajx+a3
where a, > a, >a; >0 are the three semiaxes of the ellip-

soid and u, v stand for the angular ellipsoidal coordinates,
and

M, =2[a’%, ® %, +al%, o%, +alk, %,
0 141 1

3f+°° dx -1
X .
( 0 ‘/x+af\/x7+a§\/x7+a§)

(22)

Using a method essentially equivalent to the one devel-
oped in Ref. 12, we can show that for the case of an ellipsoid
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M{” and M {2, or C and M, are enough to uniquely identi-
fy the size (three semiaxes) and the orientation (three Euler
angles) of the scatterer. Evidently, the restriction of our re-
quirements to just two low-frequency moments generated by
the electrostatic potential for the case of an ellipsoid reflects
the simplicity and the symmetry of this particular scatterer.
On the other hand, we observe that the electrostatic poten-
tial @, is the only low-frequency coefficient that enters every
term of the expansion (12) for the scattering amplitude. It
seems that it is possible to recover the geometry of “reasona-
ble” scatterers from a knowledge of all the low-frequency
moments generated by ®,, i.e., we can state the following
conjecture.

Conjecture: If all the low-frequency moments
{M{”(r)}=_, are known on the unit sphere then the sur-
face S of the scatterer can be recovered.
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For systems of rigid bodies and mass points, the general form of summational invariants will

be derived using some results of Amigé and Reeh [J. Math. Phys.

1. INTRODUCTION AND RESULTS

Recently, Amigd and Reeh derived the structure of
summational invariants of a system of mass points.! Under
reasonable physical conditions these are of the form

f(x,p,t) = A,(p°/2m;) + Byp + By (xXp)

+ By, + A, (pr,/m;) + A5 (x2/m;) + k;,
(1)
with r;: = m;x — pt in the Galilei invariant case. Only the
constant k; may depend on the particle under consideration
(see the Appendix). Under reasonable conditions the ex-
pressions ~r? and ~r;p appear only in the case of the very
special interaction potential V;;: = a/|r, — ;| between all
particles of the system (for more details cf. Ref. 1). In this
paper I shall study a system of rigid bodies and mass points.
The subsystem of the mass points is assumed to obey the
conditions on the results of Ref. 1 (i.e., the interaction
between the mass points has to be sufficiently “strong”).
These will be used to derive the general form of summational
invariants of this system in the frame of Galilei invariant
mechanics (for a general introduction into this field see
Refs. 1 and 2 and the literature cited there).

Consider a system of # rigid bodies and m (m > 1) mass
points. If one denotes the coordinates and the momentum of
the center of mass of the ith rigid body by x, (¢) and p; (1),
the angular momentum relative to its principal axis system
by s;, and its Euler angles by V,;: = (¢/,,6,,¢,) (i=1,...,n)
one can describe a state of this system by a point

(xl(t)’pl(t)a sl(t)"l’l(t)9'°"xn+m (t)’pn+m (t)))

in the phase space I', where the indices j =n + 1,...
are related to the mass points.

For the systems considered here it is assumed that the
interaction between the particles decreases sufficiently fast
such that the following assumptions hold (for more details
see Ref. 3).

A4+ m

A. Asymptotic condition

Let x3*(#) and p§* describe the free motion and s}* and
W:*(¢t) the free rotation of a particle. Then there are orbits
(x,(8),.sPp 4 ., (1)) in the phase space of the system such
that

X () — xT(O)| + [P (8) — PP -0 (1> + ),

® Permanent address: Institut fiir Theoretische Physik III, Universitit
Diisseldorf, Universititsstr. 1, Geb. 25.32, D-4000 Diisseldorf 1, West
Germany.
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24, 1594 (1983)].

8; () — | + |, () — W5 (2)| -0(t> + ),

7o —
(i =L.mk=1,.,n+mex= [m ® ])
outt— + oo

B. Asymptotic completeness

The set of all (asymptotically) free incoming states is
equal to the set of all free outgoing states and to the set of all
free states up to sets of measure 0.

C. Ciuster condition

For any of the particles one can find initial conditions
(i.e., for t— — oo ) such that it never interacts with the rest
of the system.

A function,

HX,(I), p (D), S,(t),\l’l(t), ,,+,,.(t)’ pn+m(t) t)

on the phase space of the system is called summational invar-
iant if there are functions

Si(x(2),p(2), s(£),%(2);1) resp. f(x(2),p(2);1)
corresponding to the particles of the system with
nx (t)’ ’pn+ ms )

n+m

—Zf(X,,p,,s‘"‘I"“t)+ z £(xmpn

i=1

E] +

1
+m

f( out Lout ,out \l’out out out
= xl ’pl ’sl ’ !pj ’)

i=1 n+l

= F(x3"(8),--sP0% m3t)s

n+4msy
andd /dt f;, =0 (k = 1,...,n + m) for all asymptotic orbits.
The f; may be different for different particles. The function
F is not necessarily conserved along the actual path of the
interacting system.

From Sec. I Cit follows that the addition of further par-
ticles to a certain system does not increase the number of
independent invariants. Therefore, it is sufficient to consider
all possible two-particle subsystems and derive the structure
of their summational invariants. The invariants of the sub-
system of the mass points are known according to Ref. 1 and
are of the form (1). Now the notation is slightly altered: the
indices “ex” are dropped. The mass points coordinates be-
fore resp. after the interaction are labeled by the index 1 resp.
3, therigid bodies by 2 resp. 4. The equation under consider-
ation obtains the form

.fl ( xlrpl’t) +f2(x2,p2,82,‘l’2,t)
= [1(X3,P38) + f2(X4,P4,84, ¥ 42)
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for all incoming and outgoing states related by a realizable
scattering process, with f; of the form (1).

To answer the question whether there are, besides the
ten classical conservation laws, additional summational in-
variants that show up only on the manifold of physically
realizable scattering events U, one has to examine carefully
its structure that is determined by the interaction. If there is
no interaction at all, any function that is constant for free
orbits is a summational invariant of the system. Therefore to
get reasonable results one has to find physically realistic as-
sumptions on the interaction. The first idea one might have
is to postulate that U contains a full open subset of M, the
scattering manifold that is constrainted by the ten classical
conservation laws. But for general summational invariants
depending on positions and momenta (and Euler angles and
angular momenta) this is impossible (a detailed discussion
of this problem is given in Ref. 2). So one has to extract the
essential features from a not-to-ill behaved interaction.

One should expect that there is scattering. The scatter-
ing should be continuous in the sense that small changes of
the ingoing states should lead to small changes of the outgo-
ing states (at least on an open subset of U). There should
exist scattering events that, keeping the outgoing momen-
tum (angular momentum) fixed, result in a set of outgoing
angular momenta (momenta), i.e., the outgoing linear and
angular momenta may be varied separately by changes of the
ingoing states. And there should be scattering events that
change the energy of rotation. These assumptions form the
essence of the propositions of the central theorems of this
paper.

To deal with the difficulties that arise from the compli-
cated motion of a rigid body (even in the free case), two
simplifications will be made: As indicated by the title of this
paper, systems consisting purely of rigid bodies will not be
discussed, but the case that a subsystem of “auxiliary” mass
points with well-known summational invariants is added.
This allows the reduction to a one-body problem. By virtue
of the cluster condition the interaction between the rigid bo-
dies no longer affects the form of the summational invariants
related to them. In this sense the mass points carry the “‘ef-
fective” interaction of the rigid bodies (if there is more than
one). Second, the dependence of the f; on the Euler angles
will be dropped. Thus one circumvents the difficulties that
are induced by the fact that there is no further a priori con-
servation law related to the angle variables and the angular
momenta analogous to the conservation of the center of
mass. With respect to the rigid body one arrives at a situation
similar to the case of pure momentum dependence in the
mechanics of mass points.

To sum it up: We are interested in the solution of the
following equation:

Ji(XpP1st) + f2(X2,P2:8,0)
= [1(X3,P3:2) + f2(X4P4s8452) 2)

for all states related by a realizable scattering event.

As a first step we consider a system that is constrained to
a plane, the angular momenta of all particles being parallel to
the planes normal vector. Due to the geometry of this system
the conditions on the interaction have a considerably simple
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physical content, namely the existence of at least one nontri-
vial scattering event (1.1) and continuity of the scattering in
the neighborhood of *“forward scattering” in the space of the
angular momenta s (1.2).

Theorem 1: Consider a system of # rigid bodies and m
(m>1) mass points obeying the conditions stated above.
The scattering is assumed to be constrained to a plane. Let
the interaction between a mass point and a rigid body in any
two-particle subsystem fulfill the following conditions:

(1.1) For almost all incoming angular momenta s, ex-
ists a realizable scattering process with p, — p,#0.

(1.2) The scattering is continuous in the sense that for
almost all incoming angular momenta s, one can cover al-
most an open neighborhood of s, = s, with scattering events.

(1.3a) f,eC', ifA,=A;=0[A,, A, from (1) for f,].

(1.3b) £,eC?, if A, or A;#0.

Then f, has the following structure:

f2(x,p,s,t) = A,[p*/2m, + §%/20,] + B,p
+ B, (xXp +5) + Byry + £,

where r,: = m,x — pt. Only the constant k,, beside the mass
m, and the moment of inertia 6,, may depend on the particle
considered.

For a system that is not subjected to any a priori con-
straints, the conditions on the interaction have to be strong-
er. Conditions (2.1) and (2.2) secure that the outgoing lin-
ear and angular momenta may be varied sufficiently
independent of each other. Condition (2.3) postulates, in
analogy to (1.2), the continuity of the scattering in the
neighborhood of “forward scattering” with respect to the
angular momenta s.

Theorem 2: Consider a system of » rigid bodies and m
(m > 1) mass points obeying the conditions stated above.
Let the interaction between a rigid body and a mass point in
any two-particle subsystem obey the following conditions:

(2.1) For almost all incoming angular momenta s, one
can reach at least three linear independent vectors
P*: = p, — P,, depending on s,, by realizable scattering pro-
cesses.

(2.2) For almost all incoming angular momenta s, one
can find a p*#0 with p*Xs,70 such that one can reach
three linear independent outgoing angular momenta s, by
realizable scattering events, keeping s, and p* fixed.

(2.3) The scattering is continuous in the sense that for
almost all values of the amount of the incoming angular mo-
menta one can cover almost an open neighborhood of
|sa| = |s,| by realizable scattering events.

(2.4a) Let f,eC', ifA,=A4,=0.

(2.4b) Let f,eC?, if A, or A,#0. Assume that there
exists at least one scattering event which changes the energy
of rotation and the momentum of the rigid body.

Then £, has the following structure:
v ()?

2
f2(xap’syt) = Al[p_ + + B['P

2m, =204

+ B,(xXp +8) + Byr, + k,,

with r,: = m,x — pt. Only the constant k,, beside the mass
m, and the moment of inertia 64, may depend on the parti-

Wolfgang Huber 1694



cle. As a result of this paper, it turns out that there are no
further summational invariants of a system of rigid bodies
and mass points besides the a priori known ones. The two
additional invariants for systems with 1// interaction po-
tentials do not occur in the case of interaction with rigid
bodies.

Il. PREPARATIONS FOR THE PROOF OF THE
THEOREMS

The explicit time dependence of the f; may be removed
by the transformations: (x,p,s,t) > (r,p,s) and
x,p,t) — (r,p). Tl}ere are continuously differentiable func-
tions 7(r,p,s) and f(r,p) with

Frps) =fxps,t) and F(rp) =f(xp0),
where r = mx — pt.

Now the problem can be reformulated as follows: We
are interested in the solution of the functional equation
(identifying 7, with f, for convenience):

Si(r,By) + fo(r2pass,)

= f1(r3,P3) + £5(T4sPsS4), (3)
whenever (r,,p,,..-,F4,P4,84)€UC M. The ten a priori conser-
vation laws can be used to replace the expressions in the
coordinates of the mass points by those in coordinates of the
rigid body. There are two possibilities.

(i) The expressions ~ rep resp. ~r? are not invariants of
the subsystem of the mass points (i.e., 4, = 4; = 0). With

2 3 jy2
p (s)
F(r,ps): = fo(r,ps) — 4 [ + ) —
P 2 12m, * 4 26)
~B,p— B, [(1/m)rXp + ] —Byr,
one obtains from (3) by insertion:

F(l'z,szsz) = F(r4,p4,S4), (4)

whenever (r,,p,,8,,14,P4,S4)EV, where ¥V denotes the Galilei
invariant subset of U of realizable in and out states of the
rigid body.

(ii) The expressions ~r+p resp. ~r” are invariants of the
subsystem of the mass points (i.e., 4, or 4;5#0). If there is
no function g(r,p,s) of the coordinates of the rigid body such
that the following equation holds:

(1/m))(ar; + bry'p,) + g(r;,p28,)
= (1/m,)(ar} + bryp;) + g(r4,P4ssSs), (5)

whenever (r,...,s,)€U, for any choice of a0 or b #0, then
the terms ~r? and ~r-p cannot be summational invariants
of the whole system. Thus 4, and 4, have to vanish and one
is led back to case (7).

Now the problem to find a solution of (3) is reduced to
solve (4), which depends only on the coordinates of the rigid
body, and to show that there isno g(r,p,s) that solves (5) for
any nontrivial choice of a and b (i.e., a or b #0).

A. Some conclusions from Galilei invariance

Since the angular momentum s, of the rigid body is mea-
sured relative to its fixed center-of-mass system it is invar-
iant under translations and boosts. As the states considered
are free asymptotic states, the momenta and angular mo-
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menta do not depend on time. It is suggested that we exam-
ine the behavior of a solution of (4) under infinitesimal Gali-
lei transformations. Applying (i) an infinitesimal
translation, (ii) an infinitesimal boost, (iii) an infinitesimal
rotation, and (iv) an infinitesimal time shift one obtains,

(1) V,F(ry,p,8;) = V,F(r4,p484), (6)
(ii) V, F(ryp,s;) =V, F(r,psss), )]
(i) [(p, — Ps) XV, + (r; — 1) XV, +8,XV,]
X F(r,p,,8,)
=8, XV, F(ry,p,:8,), (8)
(iv) P2V, F(r;,p,8;) =PV, F(r4,p484), (%9

if (ry,...,8,)€V.
The same steps [except (iii) ] applied to (3) lead to

m V. fi(r,p;) + myV,15(r,p,2,8,)

=m\V,fi(r3,p3) + myV, fo(14P4sSs), (10)
m V. fi(rppy) + mV fo(ry,p,.8,),

m V. f1(rs,p3) + MV, f5(rs,pasSa)s (11
PV, fi(r,py) + P2V, o (r2PasS,),

P3V.f1(r3p3) + PacV Lo (X4PusSs), (12)

if (ry,...,84)€U.

Ili. PROOF OF THE THEOREMS

The proof will be carried out in two steps. First it will be
shown that a solution of (4) is, in case of Theorem 1, a
continuously differentiable function k(A,u,n) (see below)
that is constant in any fixed inertial frame and is a constant k
in the case of Theorem 2. The second step will lead to the
conclusion that there is no solution g(r,p,s) of (5) for any
nontrivial choice of (a,b).

In the case of Theorem 1, consider any arbitrary inertial
system and let n be the normal vector of the scattering plane.
Due to the geometry of the problem, the expressions
ryn=rg,n=:A4 and p,’n = p,"n = ;u are constants of mo-
tion. Therefore any function k = k(A4,u,n) is a solution of
(4) and is constant for any given inertial system. Let P(s,)
be the set of all p*: = p, — p, that can be reached by realiza-
ble scattering events, keeping s, fixed. Also, P is invariant
under boosts and translations. Given any solution F of (4),
inserting (6) into (9) yields

(P2 — Pa) YV, F(ryp,s,) = — p*V, F(ryp,s,) =0,
(13)

for all states related by a realizable scattering process. Equa-
tion (13) is Galilei invariant, thus one has in the lab system
of the rigid body p*V, F(0,0,s,) = O for all p*P(s,). Due to
(1.1) there is for almost all s, at least one p*#0. Therefore,
P(s,) contains a circle in the scattering plane consisting of
all p* obtained by rotation of the experimental setup or,
equivalently, of the lab system of the rigid body about n.
Thus one may deduce V,F(0,0,5,) ~n for almost all s,.
Boost and translation yield, due to the invariance of P(s,):

er( r’p)s2) ~n,
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for allr,p and almost all 5,. The continuity of V, Fextends the
statement to all s. Thus we have, instead of (4),

F(ryp..8,): = G(4,p28,) = G(4,p484)
= F(r47p4’s4)’

if (rz’P2,52’1'4’p4’s4)€V, A= nr, = nr,.
Performing an infinitesimal rotation about n, (8) yields,
after multiplication with n,

n-{ (p, — py) XV,G(4,p,8,) ]

=n[p*XV,G(1,p,8,)] =0. (14)
According to (1.1), P(s,) contains at least a circle in the
scattering plane. Due to (14), the vector in the brackets has
to lie in the scattering plane. This is possible only if
V,G(A,p,s,) ~nfor all p and all s,, due to continuity. Defin-
ing G(A,p,s) = : H(A,u,s) one arrives at

H(j’),uﬁs2) = H(/L#,s‘t),
if (ry,...,84)€V. Taking into account that s, = s,°n one has
according to (1.2),

H(Au,s,m) = H(A,u,s,n),

for all s,eU(s,), due to continuity. Thus d,H(4,u,sn) =0
almost everywhere. Continuity of the first derivatives of H
yields,
H(Au,sn) = H(A,un).
For any given inertial system H(A,u,n) is a constant.
Consider now the case of Theorem 2. Let P(s,) be the
set of all p* = p, — p, that can be obtained by realizable scat-
tering events, keeping s, fixed. Consider any solution of (4).
As in the case of Theorem 1 one gets in the lab system of the
rigid body, taking (6) and (9) into account,

p*V,F(0,0,5,) = 0.

According to (2.1), P contains at least three linear indepen-
dent p*. Then P is invariant under boosts and translations.
Thus

V,F(r,p,s,) =0, (16)
for all s,, due to continuity of V, F. With F(r,p,s) = :G(p,s),
we have,

G(p2:8;) = G(P4sSs)s
for all states that are related by realizable scattering events.
Using (7) and (8) one obtains,
(P, — Pa) XV,G(P2s8,) + 85XV, G(p,:8;)

=8, XV, G(p,84)- 17)

Consider a pair (s,,p*) for which the assumption (2.2) is
fulfilled. There is, specifically, an s, 0. Multiplication with
n: =s,/|s,| yields,

(15)

n(—p*XV, +5,XV,)G(p,s,) =0. (18)

By virtue of (2.2) there are at least three linear independent
n that fulfill (18). Therefore one gets, by multiplying with s,

V,G(p28,)(p*Xs,) =0. (19)

Because of the invariance of n, p*, and s, under boosts, Eq.
(19) holds for all p,. Consider the lab system of the rigid
body. One has,
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V,G(0,8,)(p*Xs,) =0. (20)

This equation is valid for all p*’ that one gets by rotation of
the relative frame about the direction of s,. These p*’ licon a
surface or a cone about the direction of s,.

Due to (20), V,G(0,s,) has to be perpendicular to the
plane that is spanned by the s, X p*'. That is possible only if
V,G(0,s,) ~s,. For all p, the statement follows because of
the invariance of p*Xs, under boosts. Thus one ends up
with,

V,, G(p:s;) = :8(p,S,)*sy,

for all p and all s,, due to continuity. Insertion into (4)
yields,

8(DP2,8,)'8; = g(P4sS4)Sss
for all (p,,s,,p,4,8,) that are related by realizable scattering

events. According to (2.2) there are s, with s, Xs,7#0. Thus
one has

g(p,s,) =0,

for almost all s,. By continuity this extends to all s. With
G(p,s): = H(s) we arrive at

H(sz) =H(S4),

for all (s,,s,) that are related by realizable scattering events.
Insertion into (17), multiplication with s,, and (2.2) yield,

s, XV.H(s,) =0

for almost all s,. Now one has V, H(s) = :i(s)-s for all s due
to continuity and therefore

H() = H(sY,
for all s out of a neighborhood of |s,| due to continuity. Thus
H(s?) is piecewise constant. :\l"he assertion H = k = const

follows by continuity from 3, H(s*) = 0 almost everywhere.
Now we end up with,

F(r,p,s) = k = const.

To complete the proof of the theorems one has to consider
the following two alternatives.

(i) If the expressions ~r+p and ~r? are not invariants of
the subsystem of the mass points (i.e., 4, = 4; = 0) the as-
sertion of the theorems follows by insertion into the defini-
tion of F(r,p,s).

(ii) In the case that the expressions ~r<p or ~r” are
invariants of the subsystem of the mass points (i.e., 4, or
A3+#0) one has to show for any nontrivial choice of @ and b
that there is nofunction geC * thatsolves (5). Then 4,and 4,
have to vanish and the assertion follows along the line of case
(i). Proof by contradiction: consider any solution g of (5).
Taking (11) into account one obtains

mZ.Vrg(rpr’sz) _— 2a-r2 — b‘p2
=.m2°vrg(r49p4’s4) - Za-r4 —_ b'p4,

if (ry,...,84)€V, keeping in mind that r, —r;=r, —r, and

P — p; = p; — P,. This is an equation of type (4) in each

component. Using the results derived up to now one gets,
lhs = :K = rhs, (21)

with K = K(4,1,n) in case of Theorem 1 and X = const in
case of Theorem 2. Applying an infinitesimal time transla-
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tion to (5), inserting into (21), and collecting the expres-
sions in X yields,
(1/m)) [2‘1'(1'1'91 —13p;) + b(p} — n )]
+ (1/m,) [2a-(ryp, — reps) + b(p3 — p3) ]
= (l/mz) (p, — Pz)‘K = (l/mz)’P*'K,
if (ry,...,84)eU.
Consider the case of Theorem 1. Assume a#0. Per-
forming an infinitesimal translation (22) yields,
2a:(pl+py — P —ph) =0=p*(V,)’K'(Au,n)
(23)

(22)

(j=1,2,3; summation convention). Now one has
0=rn'p"d,K'(Apun)
= p"Li(Aun) (j=1273).

and therefore p*-L(A,u,n) = 0 for all (r,,...,s,)€V.
By performing an infinitesimal time transition one ob-
tains from (22),

2 2 2 2
2a- [E_ LR - T p_“] = pp*L(A,un) =0,
m, m, m; m

for all realizable scattering events. This is a contradiction to
(1.2), which states that there are scattering events that
change the translation energy. Assume now a =0, b #0.
Equation (22) yields

RIS I I ] 1

b — = 2 | =——p*K(4,un), (24)

m, m; m m, m,
for all (r,,...,5,)€U. Consider a scattering event with p*#0
in the lab system of the rigid body. Then all other scattering
events are realizable that can be obtained by rotating the
experimental setup, or the lab system of the rigid body about
the direction of n. The lhs of (24) is invariant under these
rotations, whereas p* describes a circle in the scattering
plane. Thus K has to have constant product with all vectors
of constant length in a plane. This is possible only if K is
perpendicular to the plane. The result is

2 2 2 2
31_+P_2_P_3__D_4=0,
m, m, m, m,

for all realizable scattering events, in contradiction to (1.2).
Consider the case of Theorem 2. Let a7 0. An infinitesi-
mal time shift yields for (22),

2 2 2 2
22 P_1+P_z_v_a_31]_0,
m, m, m, m,

for all (p,,...,p,) that are related by realizable scattering
events. This is a contradiction to (2.4b). Now let a =0,
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b #0. One obtains from (22):
2 2 2 2
b~[p—‘+"—2—"—3—"—“ =L (p—pK,
m. m, m m, m,

for all realizable scattering events. Consider a scattering
with p, — p,#0. Due to the Galilej invariance of the set of all
physically realizable scattering events, all scattering events
are possible that one obtains by rotating the experimental
setup. The corresponding vectors p;, — p; lie on the surface
of a sphere. The lhs is invariant under these rotations. The
constant vector K has to have constant product with all vec-
tors of constant length on a sphere. Therefore one has K = 0.
Thus one obtains,

m m, m  m,
in contradiction to (2.4b). It follows that @ = » = 0 and the
proof is completed as in case (i).
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APPENDIX

One of the results of Amigé and Reeh is the following
theorem.

Consider a system of n mass points of nonvanishing
mass with central force interaction such that scattering in a
neighborhood of forward scattering between each two parti-
cles occurs and depends there continuously on the impact
parameter p. If the interaction has infinite range, it is as-
sumed to decrease such that for the scattering angle 8 in the
lab systems: |6 |<const/p?, |36 /dp|<const/p® for large p.
Assume the £; to be locally L !. Then

fi(x,pt) =A4,(p*/2m,) + B'p + By (xXp) + Byr;

2

*T; r;
+ A2°p— + A3'_ + k,‘,
m, m,;

with r;: = m;x — pt in the Galilei invariant case and con-
stant 4;,B;,k;.

'J. M. Amigé and H. Rech, J. Math. Phys. 24, 1594 (1983).
M. Requardt, J. Math. Phys., 28, 1827 (1987).

M. Reed and B. Simon, Methods of Modern Mathematical Physics III:
Scattering Theory (New York, 1979).
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A new general approach for investigating imperfect fluid cosmological models is introduced in
which the equations of state are completely “dimensionless.” Such equations of state are then
utilized to reduce the Einstein field equations governing Bianchi V imperfect fluid cosmologies
to a plane-autonomous system of equations, thus enabling the qualitative behavior of these
cosmological models to be analyzed in a straightforward manner. The resulting plane-
autonomous system is investigated. Finally, exact solutions of the Bianchi V imperfect fluid
field equations in the case when the equations of state take on a particularly simple form are

discussed.

I. INTRODUCTION

In a recent paper’ (hereafter referred to as paper I)
Bianchi V imperfect fluid cosmology was investigated. [ For
brevity, we will adopt the notation that an equation or refer-
ence in paper I will be referred to using a label I]. It is of
interest to study cosmological models with a richer struc-
ture, both geometrically and physically, than the standard
perfect fluid Friedmann—Robertson-Walker (FRW) mod-
els. Bianchi V models are of particular interest since they are
sufficiently complex (e.g., the Einstein tensor has off-diag-
onal terms) while, at the same time, they are a simple gener-
alization of the negative-curvature FRW models. Cosmolo-
gical models that include viscosity have been investigated in
an attempt to explain the currently observed highly isotropic
matter distribution (I11-I3) and the high entropy per baryon
in the present state of the Universe (14, I5), and in order to
further study the nature of the initial singularity (I6) and
the formation of galaxies (13). Models that include heat con-
duction have also been studied in spatially homogeneous
cosmologies (in particular, see 17). The motivation and
background for this research is discussed in more detail in
Ref. 1.

In MacCallum? a general class of Bianchi models were
studied [all class A models, and the set of class B with
n% =0 (a = 1,2,3)]. In this class (that contains the Bianchi
V models) the general exact (two-parameter) orthogonal
perfect fluid solution is known up to quadratures®. Collins*
has investigated a certain subclass of this class of models
whose equations reduce to an autonomous system and are
therefore susceptible to a qualitative analysis utilizing geo-
metric techniques. More precisely, Collins studied a subclass
of perfect fluid, nonrotating, spatially homogeneous cosmo-
logical models with equation of state p = (¥ — 1)p and zero
cosmological constant. In particular, this subclass includes
the (not necessarily LRS) Bianchi V models (see Fig. 3, in
Ref. 4). Later, this subclass was extended to include perfect
fluid LRS Bianchi models (again including type V models)
with tilt.>

Here, we shall use the techniques and notation of Refs.
2-5 to reduce the differential equations governing the Bian-
chi V imperfect fluid cosmological models under considera-
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tion to a plane-autonomous system of equations.

More precisely, in this paper we will investigate a class
of phenomenological equations of state (for the pressure and
coeflicients of bulk and shear viscosity) in imperfect fluid
cosmological models. This general class of equations of state
is characterized by the fact that completely dimensionless
quantities are inter-related (i.e., the equations of state are
“dimensionless™). It is noted that this class includes as spe-
cial cases all the most commonly considered equations of
state. This procedure amounts to introducing a new ap-
proach for dealing with equations of state in cosmology, an
approach that is quite general, but for illustrative purposes
we restrict our attention to Bianchi V cosmologies. The fea-
ture of this class of greatest interest here is that equations of
state of this type are the most general under which the result-
ing Einstein field equations reduce to a plane-autonomous
system.

The analysis will consequently enable us to write the
Bianchi V imperfect fluid field equations as a plane-autono-
mous system. This in turn will enable us to analyze the quali-
tative behavior of these cosmological models in a straightfor-
ward manner. The plane-autonomous system is studied
further in the case that the equations of state are of a special
(power law) form; the resulting system in a particularly sim-
ple subcase is displayed in the final section for illustration.

In Sec. IV we shall look for exact solutions of the Bian-
chi V imperfect fluid field equations in the case when the
equations of state take on the simple form p= (y — 1)p,
& = £0, and 7 = 1,0 [see Eqgs. (4.1)]. Exact solutions will
of course be very useful in concert with any qualitative anal-
ysis. A simple, general first integral of the field equations is
found. Using this first integral it is then shown that the field
equations reduce to a single, second-order, ordinary differ-
ential equation for a single variable. In the particular case of
v = 2 (stiff matter), a simple (albeit unphysical) solution is
exhibited.

il. THE MODELS

We shall study LRS Bianchi type V spatially homoge-
neous cosmology, where the metric is given by

ds = —dt? + P (t)dx* + b2 (t)e*(dy* + d2*), (2.1)
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in which the source of the gravitational field is a viscous fluid
with heat conduction, so that the energy—-momentum tensor
is given by
Tab = (P +p)uaub +ﬁgab - 2""’o-ab + gty + U,qss
2.2)
with
p=p—49, (2.3)
where p is the thermodynamic pressure and & and 7 are the
coefficients of bulk and shear viscosity, respectively, thereby
allowing dissipative processes to be included in the models.
The Einstein field equations for a comoving fluid then
yield an equation defining the energy density (I.8a),
bh? ab 3
=2
b? + ab d*
an equation that defines the only nonzero component of the
heat conduction vector g, (1.8b),
g, =2[b/b—a/al, (2.5)

and the remaining nontrivial equations (1.8c) and (I.8d),

(24)

1 b2 b _ 4 [a b]
—_——— 2 =p—— | — ==, 2.6
@ b? b 317 a b (26)
1 & b ab _ 2 [b a]
______ —_—=p— = p|—=—==. 2.7
@ a b ab P 31’ b a 2D

We recall, that for the Bianchi V models under consider-
ation,

o> =}{[a/a—b/b] - (2.8)

0=a/a+2(b/b), (2.9)
and

3R= —6a~2, (2.10)

where >R denotes the Ricci curvature of the hypersurfaces of
homogeneity. (Note that when a/b = const, the heat con-
duction vector and the shear are consequently both zero—
this case is discussed in some detail in Ref. I.) We also recall
the identity (the “generalized Friedmann equation” or “first
integral”),

82 =9/a* + 30® + 3p, (2.11)

where use has been made of (2.10). By adding Eq. (2.6) to
two times Eq. (2.7), we obtain [using (2.11)] the Ray-
chaudhuri equation:

6= —102—20°—}(p+ 3p). (2.12)
The second independent equation we shall write as
o= — 290 — 06, (2.13)

which is obtained by subtracting Eq. (2.7) from Eq. (2.6).
Finally, from the conservation law (T"";,, u, =0), we find
that

p=—(p+p)0+£6°+4n0° + (4/13)
><a[§92—02—p]. (2.14)
Now, we define the new variables £ and x, and the new

time coordinate , as follows:
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2[a b ] o
==|———|, B=2/3—, 2.15
p=2]-2] =255 (2.152)
so that S measures the rate of shear in terms of the expan-

sion,

x=3p/6?, (2.15b)

so that x measures the dynamical importance of the matter
content, and

dQ 1

f=e 0, —= ——
dt 3
where ¢ is the representative length scale with 8 = 3¢/¢
Therefore, using Egs. (2.15) and Eq. (2.12), we can write
Eq. (2.13) as
ap

1 9% , 9% 77]
—=—pl4-B*—x-EL +24121], 2.16
10 23[ B*—x 62+ 9 + g (2.16)

and we can write Eq. (2.14) as

@ _ g .. B
& —x{l-x /3]+B[2x 2+2]

0: (2.15C)

p ¢

N p2
-3L 2.17

g B (2.17)
[where we have used Eq. (2.12) for p]. Finally, we note that
from (2.11) we are only interested in the region

B?* + 4x<4,

2.18
x30. ( )

lll. EQUATIONS OF STATE

In order to complete the system of equations we need to
specify three equations of state for p, §, and %. In principle,
these equations of state can be derived from kinetic theory®
8, For example, Collins and Stewart® considered a class of
nonrotating Bianchi models (that included Bianchi type
V’s) with shear viscosity (but no bulk viscosity) in which
1 = 1pt.,, where the harmonic mean of the collision times
for the various reactions, ¢, is assumed to be given by

t.on = 1/42nZ, where n is the number density and 2 is the
mean total scattering cross section (related to the tempera-
ture by a suitable approximate relationship). Subject to
some additional, physically motivated assumptions, Collins
and Stewart® concluded from a qualitative analysis that for
arbitrary initial conditions the shear anisotropy could be ar-
bitrarily large now, and that the Universe need not have been
in thermal equilibrium during the early stages. These con-
clusions are relevant in determining whether strong dissipa-
tive mechanisms in the early Universe (such as neutrino vis-
cosity) could produce the observed highly isotropic matter
distribution.'®*!

However, in practice, it is necessary to specify phenome-
nological equations of state subject to a set of thermodyna-
mical laws.'? Of course, specification of p, £, and 7 requires
special conditions for which there may be no physical foun-
dations. This specification should be subject to physical con-
straints such as p, £, and» should tend to zero as the density
tends to zero and must be subject to the energy conditions. It
goes without saying that the behavior of the fluid (e.g., it’s
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asymptotic behavior) depends on the assumptions made on
the form of these physical quantities. We also note that in
writing down the energy-momentum tensor for a viscous
fluid with heat conduction in the form of Eq. (2.2) we have
assumed that 7,, = — 290,,, where 7, is the tensor of
anisotropic stress. This assumption (the “viscosity assump-
tion”) is valid whenever the anisotropy is small (i.e.,
|7Tab / p | < 1 )

There are some equations of state that are commonly
used that, although not widely applicable, are obtained as a
result of approximate estimates for particular fluids. The
barotropic equation of state, p = (¥ — 1)p is often assumed.
Here, 1<y<2 is necessary for the existence of local mechani-
cal stability and for the speed of sound in the fluid to be no
greater than the speed of light. Belinskii and Khalatni-
kov'*!* consider viscous fluids in which the viscosity coeffi-
cients depend on powers of the energy density. It is argued
that this approach will be valid whenever the kinetic coeffi-
cients that arise at a higher order of approximation will be
proportional to the energy taken to a power greater than the
one characterizing the coeflicients of { and . Consequently,
this approach ought to be valid (at least) near the initial
singularity when the energy density is very small. Moreover,
it is argued that the qualitative picture ought not to change
substantially from that obtained from this approach.'?

As noted above, in order to complete the system of equa-
tions three equations of state must be given, specifying p, &,
and 7 in terms of the other physical quantities. Since we are
considering a viscous fluid with heat conduction, in general
all physical quantities depend on two independent thermo-
dynamical variables, one of which will be chosen as p and the
second of which will be denoted by X (e.g., temperature or
entropy density), viz., '

p=p(pX),
7=n(pX).

As also noted earlier, in principle these equations can be
obtained from kinetic theory, but in practice phenomenolog-
ical equations of state need to be assumed. In addition, we
also recall the variables fand x occurring in Egs. (2.16) and
(2.17), viz.,

B =23(a/0), (3.2a)
x=3p/6? (3.2b)

and note that, firstly, B and x are dimensionless, and, sec-
ondly, in the absence of viscosity and with p = (y — 1)p,
Egs. (2.16) and (2.17) form a plane-autonomous system in
Band x.

Here, we are going to consider equations of state of the
following form:

p/0*=F(Bx),
5/6=G(Bx), (3.3)
1/6 = H( B,x).

Let us argue in favor of these equations:
(1) First, Egs. (3.3) are completely dimensionless equa-
tions since, as noted above,  and x are dimensionless, and
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the ratios p/62, £ /6, and 7/0 are dimensionless. It can be
argued that dimensionless equations of state are the most
physically natural. In particular, it might be expected that
such equations will be valid whenever the physics is scale
invariant. Scale-invariant solutions in classical hydrodyna-
mics have been a fruitful source of models for physical sys-
tems having no intrinsic units of length, mass, or time. More-
over, this situation might be especially pertinent in the
qualitative analysis that we intend to carry out, where it will
be of interest to study physical systems that have no intrinsic
scale in an asymptotic sense.

We note that our particular “choice” of dimensionless
physical quantities (3.3) is to some extent arbitrary, and the
choice has been made for convenience. However, Eqs. (3.3)
are independent of this choice. For example, if o is nonzero,
and if we assume that p/o” = f( B,x) and 5/0 = h( B,x),
then

p/0* = [07/0°1f( Bx) = F( Bx),
and
77/62 [a/alh( Brx) = H( B)x)-

In addition, p/p=h(Bx)
= (p/6*)h( Bx) = H( Bx).

(ii) Second, Egs. (3.3) are the most general equations of
state such that Egs. (2.16) and (2.17) reduce to a plane-
autonomous system, enabling us to study the viscous models
under consideration qualitatively in a straightforward man-
ner. In general, it may be possible for the system of equations
under investigation to reduce to an autonomous system of
dimension greater than two even if Eqs. (3.3) are not as-
sumed. However, it is strongly suggested by Egs. (2.16) and
(2.17) that equations of state (3.3) are clearly the most nat-
ural in any attempted reduction to an autonomous system,
and, moreover, from the above comments Eqs. (3.3) are
perhaps suggested by dimensional considerations.

(iii) Next, since we are considering spatially homoge-
neous models it is natural for all the physical quantities p, p,
&, 11 (etc.) and the kinematical quantities 8 and o to depend
only on t, so that p/682, £ /6, 7/6, B, and x are function of ¢
alone, and the equations of state can be considered in the
form (3.3) in all generality.

(iv) Equations (3.3) are completely general for phys-
ical systems in which 8 and x can be regarded as independent
thermodynamical variables.

(v) The most commonly considered equations of state
are of the form (3.3). For example, the barotropic equation
of state p=(—1p is equivalent to
p/0% = (y—1)p/0*=1i(y — 1)x, and is consequently of
the form (3.3), where F is simply given by
F(Bx) =1y — 1)x. Also, £ = 0" and 17 = 5"/ are
equivalent to & /0 = &,[p/0%1"* and /0 = n,[p/60%1'?,
which are simple examples of Egs. (3.3) with
G( B.x) = (§o/3)x'? and H( B.x) = (1¢/+3)x"2 In par-
ticular, Belinskii and Khalatnikov'® have studied viscous
fluid models in which the equations of state are asymptoti-
cally of this form. In addition, since these ‘“common” equa-
tions of state (particularly the barotropic equation of state)
are derived from kinetic theory, it can be argued that there is
some kinetic theoretical basis for Eqs. (3.3).

implies that p/6?
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(vi) Finally, FRW models can be written in terms of a
plane-autonomous system of equationsin ( p,0) space. Mur-
phy'® included bulk viscosity in isotropic and spatially ho-
mogeneous cosmologies, and it can be shown that the plane-
autonomous character of the resulting field equations can be
retained if the bulk viscosity dissipation is modeled by means
of an equation of state p = p( p,0) (where{ = — dp/add). It
is known that FRW cosmological models are structurally
unstable.” Golda et al.'® have shown that if the equation of
state p = (y — 1)p — {0 with £( p) = §o( p)™ is assumed,
then the only possible solutions that are structurally stable
are those with m =} [that is, those in which
£/60 = ¢o( p/8?)"?, which is of the form of (3.3)].

It should be noted once again that the analysis, and, in
particular, the discussion above, is quite general, and is
equally applicable in all Bianchi-type models. For illustra-
tion, we are considering only Bianchi V imperfect fluid mod-
els here; the analysis will be extended elsewhere.

No qualitative analysis can be undertaken unless F, G,
and H are further specified. Here we shall assume for simpli-
city that F, G, and H are independent of . This, of course,
still enables us to write the equations as a plane-autonomous
system. In addition, if it is possible for p and @ to be regarded
as the two independent thermodynamical variables (recall
the baryon conservation law in the form 72 + n6 = 0, where
n is the particle number density), then this assumption is the
special case guaranteeing that the equations of state are di-
mensionless. Finally, in general, this will always be possible
if all the quantities of interest are functions of ¢ only, as is
expected in the spatially homogeneous models under consi-
deration.

Moreover, for simplicity we shall consider the case
when F(x), G(x), and H(x) are functions that depend on a
power of the argument; namely,

p/0% = pyx', (3.42)
/6 =_Ex™, (3.4b)
17/6 = 1]0)6", (3-40)

where /, m, and n are constants. Such equations may be valid,
at least in an approximate sense, and ought to be applicable
in a qualitative analysis. In addition, these equations are con-
sistent with the “common” examples alluded to above. Us-
ing Eqgs. (3.4), Egs. (2.16) and (2.17) reduce to a plane-
autonomous system. [We note that since *R<0 [Eq.
(2.10)] it follows that 82> 0 [Eq. (2.11)] and 8 <0 [Eq.
(2.12)] imply that if 6,> O (at present) then &> O for all #;

J

hence all quantities in equations (3.4) are well defined. Care
must be taken in extending this analysis to Bianchi IX mod-
els in which 3R > 0 since 8 is no longer always positive. ]

IV. EXACT SOLUTIONS

In a series of papers cosmological models have been ex-
amined in which the condition 0?/82 = const. is assumed
(I11,112,and 116-21), and Bali'” has investigated Bianchi I
viscous fluid cosmology with magnetic ficld under the as-
sumption 7 = 7,6 and has found an exact solution (in which
lim,_, 0/6 = 0). In this section we shall investigate exact
solutions of Egs. (2.6) and (2.7) with equations of state
given by (3.4). In particular, we shall consider the simple
case in which /=1, m =0, and n = 0in Eqgs. (3.4), i.e.,

p=(y—Dp,

&= ;oe’

n =10
(where ¥ = 3p, + 1), in which first integrals of Egs. (2.6)
and (2.7) can be obtained by the method of decomposable
operators of Maartens and Nel.'® Exact solutions will be
extremely useful in combination with any possible qualita-
tive analysis.

Using equations of state (4.1) [and employing Egs.
(2.3), (2.4), and (2.9)], Egs. (2.6) and (2.7) become, re-
spectively,

4.1)

2b 4 & 8 1b2
—‘b_+[§o+3—ﬂ0]?+[—7’+4§0—‘3"770 e

4 71,
+[ 20—+ ag+ n] 2
3 ab
+ %(37— 2) =0, (4.2)
and
a b 2 &
S R0
bz
+[(1—7’)+4§0+i770‘—2
3 b
#la-2m+a6-2 42 4 Lay-2 =0
3 ab a

(4.3)

These equations constitute two independent (coupled, non-
linear, second-order, ordinary) differential equations for a
and b. Multiplying Eq. (4.2) by the constant a, and Eq.
(4.3) by the constant 3, and adding, yields the equation

. ¥ ) b2
( —B]%+ [ —2a—B]%+-Z—2[(a +B)50 +3(2a — B0 +%[B(1 —7) —ay+4a+ B +4(B — 2a)n,]

+i:%[( —20)(r — 1) + (1 =298 + 4(a + B)fo + §(2a — B)m] + (1/a%) (3y — 2) (¢ + B) =0.

Using the method of decomposable differential opera-
tors'®, we can find a first integral of this equation [and hence
Eqs. (4.2) and (4.3)] whenever the following algebraic
equation is satisfied:
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44)
I
Bla+B)(4a+B)(y—2)
+ (@ +8)2a —B)*[Lo +4m0] =0. (4.5)
The solutions of this equation are:
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(i)a+B=0and (i1) a
=‘{2(§o+§770) —1[(§0+§770— (¥ —2))
tVZ—PNQ+3+an— 1B (Lo+ im0,

(i) Taking a + 8= 0 [i.e., subtracting Eq. (4.3) from
(4.2)] yields the general first integral:

dfa (0) 2y — 25+ 1)
—_ — K —_— b Mo
dz(b)+ %))

(where X is an integration constant). Defining the new time
coordinate 7 by

(4.6)

i |

dt

== (3}/__2)(2 + l)a[—(E+l)§(,—(2/3)(22—l)'r]o—l]b[-—4(2+1)§o—(4/3)(1—22)7)()+7’(l+2)+22](22+I)_l

Defining the new variable B: = ¢¥"5>**+ 1, and using the
general first integral given by Eq. (4.8) in terms of the time
coordinate 7, Eq. (4.9) yields the following differential
equation for B:

Gel) wo)-zew o
where the constants C, p, g, r, and s are given by

C=(3y—2)(T+1)C*™,

r_2023-1) 2

K G+Dh ° 143’

S=6mo/(Z + 1) +2/(1 +3), (4.11)

o= —(5+22)(6+4m0) + (¥ —2) 1

2022 + 1) ’
g  —QRZ+3)Q2—1)(§+1m0) + (¥ —2)
K 2023+ 1) '

In the above, a prime denotes differentiation with respect to
7. Equation (4.10) is a (single) second-order, ordinary dif-
ferential equation for the (single) variable B.

(iii) Let us consider the case y=2 (corresponding to
stiff matter) separately. In this case kK =0 and Z = {this
case corresponds to a double root for a/f in Eq. (4.5)].
Taking 2a — f = 0 when y = 2 [i.e., adding twice Eq. (4.3)
to Eq. (4.2)] yields the first integral:

az(ab2)3¢»’2—1i[(ab2) —Wzi(ab’)] =6. (4.12)
dt dt

Again, employing the first integral a = Ce®" and defining
the new variable X by eX = b *¢*", in terms of the time coor-
dinate 7 defined by (4.7) Eq. (4.12) reduces to a “simple”
second-order differential equation for X, which we can at-
tempt to solve in order to obtain a solution of the Bianchi V
imperfect fluid field equations in the particular case of stiff
matter. Alternatively, defining X by ¢ = B, when y =2
(2 =3) Eq. (4.10) becomes
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d

-—‘i—:—= (gbz)_(z"lu‘f'l)’ (4.7)
Eq. (4.6) integrates to

(a/b) = Cexp(KT). 4.8)

(i) We define =:=4[14+k+Vk(3+k)], where
k=(2—9)/(& +4m,) is non-negative (since y<2 and
$o> 0 and 7, > 0) ensuring two real values for £ (£ | and
3 _ ). Taking a = 3 yields the general first integral(s);

_d_[ [ = (2 4+ Dgy—(2/73)(2Z — Dol [ =42 + 1)~ (4/3)(1 —22) 70 + y(1 + Z) — (422 +22 4+ DR+ 1) 7! i(ab 22+ 1)
d

(4.9)

r

X" — [$o+27,](X")* = Cexp{[4n, + $] X — 4K7}.
(4.13)
If a solution for X is found to this second-order differential
equation, @ and b are then obtained by
a= Ce( 1/3)(X + 2K7),

b = VM X—Kn (4.14)
We note the simple solution
X=Xo+ [K/(3n,+ 1)]7, (4.15)
to Eq. (4.13), where the constant X, satisfies
63"?[ (47, + §)Xo]
= — [(36, + 414)/2(37, + 1)’1K?, (4.16)
whence
a=Cexp[{Xo + [(29,+ 1)/ (30 + 1) ]K7],
b=exp[4X, — Lo/ 3o + 1) 1K7], (4.17)
and ¢ and 7 are related by
(t, — 1) = C,e"7, (4.18)
where
= — B+ 1)
KQ27,+ 1)
_ 2074/3 120y + 1)/ (47, + 4/3)
e
(4.19a)
and
C,= 27,4+ DK /(3n,+ 1). (4.19b)

Unfortunately, a straightforward calculation using Eq.
{2.4) shows that this solution is unphysical since it leads to a
negative energy density.

V. PLANE-AUTONOMOUS SYSTEMS AND DISCUSSION

Collins** was the first to use geometric techniques of
standard differential equations theory, analyzing both non-
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rotating and tilting Bianchi-type models in the case of a per-
fect fluid source. Roy and Prakesh'® derived some results for
viscous fluid models of Petrov type D, under the unphysical
assumption of constant shear and constant . Belinskii and
Khalatnikov'>!* were the first to consider the qualitative
behavior of spatially homogeneous viscous fluid cosmologi-
cal models in any generality. In particular, they investigated
viscous fluid Bianchi I models with barotropic equation of
state p = (¥ — 1)p and in which the viscosity coefficients
depend (only) on the powers of the energy density, in which
case the field equations reduce to a plane-autonomous sys-
tem.

In this article we have introduced a new approach for
dealing with equations of state in Bianchi-type cosmologies
and we have shown by way of illustration that the field equa-
tions in LRS Bianchi V imperfect fluid cosmologies can be
written as a plane-autonomous system, facilitating a qualita-
tive analysis of such cosmological models. This work there-
fore generalizes the previous results in nonrotating and
(LRS) tilting perfect fluid Bianchi-type (including type V)
models*®, and in viscous fluid Bianchi I models," to the
imperfect Bianchi-V case.

As noted above, Egs. (2.16) and (2.17) reduce to a
plane-autonomous system when Egs. (3.3) or (3.4) areem-
ployed. For illustration, if we consider the equations of state
in the form

p/0*=1(y — )x, (5.1a)
§/60=¢x'"2, (5.1b)
7/0 = nex'"?, (5.1¢)
then Egs. (2.16) and (2.17) reduce to
L — B4 B~ By —Dx+ 3636, + ],
(5.2)
and
1703 J. Math. Phys., Vol. 31, No. 7, July 1990

B Gy —2)(1 - x) —B? [_ _ﬂ_’]
=3By =1 —x) — 1 +B|2% -2+ 5

— 3x"2[3(1 — x)&o + 74871 (5.3)

We shall analyze the qualitative nature of Bianchi V imper-
fect fluid cosmological models in a future paper.
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It is shown that if the gradient of the conformal scalar in a conformally Ricci-flat space-time is
parallel to an eigenvector (timelike, spacelike, or null) of the stress-energy tensor, then
acceptable solutions, without restrictions on the physical and kinematical quantities, of the
Einstein field equations for a viscous fluid with heat conduction may be found.

1. INTRODUCTION

If g, is the metric tensor of a space-time S that satisfies
the Einstein field equations (EFE’s) for vacuum, ie,

R, =0, and if g,, is the metric tensor of a space-times that
is conformal to S, i.e.,

8ap =By U=U(x?), (1.1)
then the Einstein tensor of S is given by
Gy = —2U,U, -2U,, — 8, (U°U, —-2U%,), (1.2)

where U, = U, and the semicolon denotes covariant differ-
entiation with respect to the Christoffel symbols formed
from g, . The space-time S is termed conformally Ricci-flat.

Given the expression (1.2), it is interesting to ask the
following. What types of matter distribution have stress-en-
ergy tensors that can be written in the form

Tb = - 2Uan - 2(]a;b —gab(UcUc - 2Uc;c)

a

(1.3)

and be realistic in that they satisfy the necessary energy con-
ditions? In other words, what matter distributions can be
admitted by conformally Ricci-flat space-times? This ques-
tion has been answered in part by Van den Bergh' who has
discussed perfect fluid and Einstein-Maxwell space-times
with stress-energy tensor of the form (1.3). Carot and Mas?
have investigated conformally Ricci-flat space-times corre-
sponding to a distribution of viscous fluid with heat conduc-
tion, i.e., the stress-energy tensor (1.3) is of the form

T = (U +Pustty + Pap — 21Ty + Gotty + gpliys
(1.4)

where u, p, u,, 0,,, q,, and 7(>0) are, respectively, the
density, pressure, fluid velocity vector, shear tensor, heat-
conduction vector, and shear-velocity coefficient. Note that
o ub=gq,u*=0.

In order to show that the stress-energy tensor given by
(1.3) may be of the form (1.4), it is assumed in Ref. 2 that
the gradient U, is proportional to the velocity vector of the
fluid, i.e.,

(L5)

As a consequence, it is found that the viscous fluid must be
either shear-free or collapsing. Assumption (1.5) is unneces-
sarily restrictive, as is clear from the fact that the FRW cos-
mological models, which are conformally flat and thus con-
formally Ricci-flat, have been shown? to satisfy the field
equations for a viscous heat-conducting fluid. In this imper-
fect fluid interpretation of the FRW models, the shear is

U, =yu,.
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nonzero and the expansion is positive, so it cannot corre-
spond to the situation in which U, is proportional to #,. In
fact, in the k = 0 FRW models, the conformal factor ¢*Vis a
function of ¢ only, so that U, is proportional to the timelike
eigenvector of T, . In the case of the perfect fluid interpreta-
tion of the FRW model, the timelike eigenvector is parallel
to u,, but in the viscous fluid interpretation, which requires a
tilting four-velocity, the timelike eigenvector lies in the two-
space spanned by 4, and gq,,.

In this paper, we show that the assumption that U, is
parallel to the timelike, spacelike, or null eigenvector of T,

given by (1.4) leads to conformally Ricci-flat viscous fluid
solutions without the restrictions mentioned earlier. In Sec.

II we give a brief discussion of the eigenvectors of T,,, and in
the subsequent sections, we present examples of viscous fluid
solutions obtained by this technique.

ll. EIGENVECTORS OF 7,

A thorough investigation of the eigenvectors of the
stress-energy tensor (1.4) has been made by Kolassis et al.*
Here we will mention only those results that are relevant to
our problem.

We write g, = Qe,, where Q = (g,¢*)"/? is the magni-
tude of g, and e, is the unit spacelike vector in the direction
of g,, and we assume that g, (equivalently e,) is an eigen-

vector of the shear tensor o, i.e.,
o’ =Ae,. .1

This assumption implies that there exist no shear velocities
between neighborhood surface elements orthogonal to the
direction of the heat flux.* Defining the quantity X by

2X=p+p—214, (2.2)
we note that the dominant energy condition is satisfied if

u>X>0. (2.3)
The eigenvectors of T, are
t,=u, +Q " '(X—JX?<=0%e, (timelike), (2.4)
S, =u, +Q "X+ VX2 =07%e, (spacelike), (2.5)

together with two other spacelike eigenvectors in the two-
space orthogonal to #, and e,. If Q = 0, then #, and e, are
each eigenvectors of T, and if, in addition, X = O, the corre-
sponding eigenvalues are equal so that any linear combina-
tion is an eigenvector. In this case, T,, is of Segré type
((LD11).IfT,, is of Segré type (2 1 1), or one of its degen-
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eracies (viscous fluid solutions of this type do exist™® ), there
exists a null eigenvector u, +e, that requires that
X=+0

If U, is an eigenvector of G, given by (1.2), then U,
must be an eigenvector of U, i.e.,

Ua;b Ub = an (26)
or

U,U%, =eU, 2.7)

where w is a scalar function satisfying w(, U,, = 0. In partic-
ular, if U, is a null vector, then @ = 0, and we find that

Ue,=4(X—p)=4(—p+p—294). (2.8)
By contracting {1.3) and (1.4), we find that
6U°, = —pu+3p, 2.9)

and from Eqgs. (2.8) and (2.9) we see that when U, is a null
eigenvector of T, the viscous fluid must satisfy the condi-
tion

#+3p+6ml=0. (2.10)

lll. EXAMPLES

We now present a number of examples, known and new,
of conformally Ricci-flat space-times that satisfy the EFE’s
with T, givenby (1.4) and for which U, is an eigenvector of
T,

(i) We start with a case in which U, is timelike. Consid-
er the Einstein—de Sitter universe with metric written in con-
formal coordinates, i.e.,

ds®> = t*( — dt? + dx* + dy* + d7°). (3.1)
Two types of viscous fluid solution corresponding to this
model are known,?> namely radial solutions, for which the
spatial component of the tilting four-velocity u“ is in the
radial direction of spherical polar coordinates, and axial so-
lutions, for which the spatial component of #“ is in the direc-
tion of one of the Cartesian spatial directions. We will con-
sider an axial solution with #° and ¢° given by

u® =t ~?*(cosh ¢4,sinh ¢,0,0),
(3.2)
q* = — Qt ~*(sinh ¢,cosh 4,0,0),
where ¢ = ¢(¢) is a scalar function. Using (3.1) and (3.2),
the solution of the EFE’s for viscous fluid is
p =12t “®cosh® 4, p=4r ~°sinh’®4,
Q=12t “®coshgsinh g, 7¢= — 6t *sinh ¢,
(3.3)

so that cosh ¢ must be decreasing for 7>0.
The eigenvalue A is given by A = 3t ~ ¢ sinh ¢, so that

X = 6t ~*(cosh? ¢ + sinh’¢), (3.4)
and the timelike eigenvector z,, given by (2.4), takes the
form

t, = tZsech ¢( — 1,0,0,0), (3.5)

which, since eV = ¢, is parallel to U, = (2t —',0,0,0). Note
also that Eq. (2.6) is satisfied with @ = 61 ~°.
(ii) As a second example in which U, is timelike, we
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look for a conformally Ricci-flat space-time that is not con-
formally flat. We start with a special case of the Kasner vacu-
um solution with metric

ds’= —dt’+t ~dx* +t**(dy +d?), (3.6)

and look for a viscous fluid solution with e’ = ¢ ™, i.e., we use
the metric

ds’ =t*(—dt® +t = dx* 4+ t*%dy?

+ t*3dz?). 3.7)
Taking «“ and ¢° to be given by
u® =1t~ "(cosh ¢,t'* sinh ¢,0,0),
g¢° = — Qr ~™(sinh ¢,2'”* cosh ¢,0,0), (3.8)
where ¢ = ¢(t), the EFE’s lead to
p=1im(3m+2)t ~*72™(2cosh® ¢ + 1),
p=14mt =27 ?"[2(3m + 2)cosh® ¢ — (15m —2)],
(3.9)

Q=3m(3m + 2)t ~*~?"sinh ¢ cosh ¢,
nY={mt 2~ "[3m + 5 — (3m + 2)cosh’ ¢],
where Y= ¢sinh ¢ — ¢~ ' cosh ¢. This solution satisfies
the dominant energy condition if m >0 and satisfies 70
provided that cosh ¢ is decreasing and
cosh? ¢>(3m + 5)(3m + 2) ~'. If m<3, then p>0 for any
value of cosh ¢.

The eigenvalue 4 is given by A =3t ~ ™Y, so that

X =1im(3m + 2)t —*~?™(cosh® ¢ + sinh? ¢), (3.10)
and the timelike eigenvector ¢, is
t, =t™sech ¢( — 1,0,0,0), (3.11)

which is parallel to U, = (mz —%,0,0,0).

(iii) We now turn to the case in which U, is a spacelike
eigenvector of T, and consider the Bertotti-Robinson non-
null electrovac space-time with metric

ds® = (a*/P)(—dt?+dr* + * d8*
+ 7 sin? 8 dy?). (3.12)

This space-time is conformally flat with e” = ar ~ ! and satis-
fies the EFE’s for a viscous fluid with

u® = a~ 'r(cosh ¢,sinh ¢,0,0),

e® = a~ 'r(sinh ¢,cosh ¢,0,0),

p=3p=1Y=da, Q=0
where ¢ = ¢(r) and Y=a "' (r¢’ cosh ¢ — sinh ¢) >0 for
17>0. The eigenvalue A = 27, so that X = 0. This is an exam-
ple of the special case described in Sec. I1, the Segré type of

T,, being ((1,1) (1 1)). Any linear combination of #, and e,
is an eigenvector; in this case

(3.13)

U, = (0,—r=,0,0)
=a~ '(u, sinh ¢ + ¢, cosh ¢). (3.14)

(iv) As a second spacelike example consider a space-
time conformal to the Schwarzschild vacuum solution, i.e.,
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ds* =V — (1 — @m/M)dt2 + (1 — (2m/r))~ 'dr
+ A dB? + Psin? 0 dy?], (3.15)

where U = U(r). We look for viscous fluid solutions with
this metric for a suitable choice of U. The need to satisfy the
dominant energy condition imposes strong restrictions on U;
we choose

eV=(1- Qm/NY’r, (3.16)

and the dominant energy condition is satisfied, provided that

r>\[6M- (3.17)
The EFE’s are satisfied with
u® = [ (r — 2m) ~'P cosh ¢,r sinh 4,0,0],
g°= — Q[(r —2m) ~ ' sinh ¢,r cosh ¢,0,0],
p=(r—2m) " 2[6m®cosh® ¢ + (P —9Im?)],
(3.18)

p=1(r—2m) ~2[6m” cosh® ¢ + 7 — 24mr + 45],
7Y = —{[3m® cosh® ¢ — (r — 2m)?],
Y={[r$' cosh ¢ — (r + m)(r —2m) ~'sinh ¢],

where ¢ = ¢(r). Note that >0 if ¢>0, ¢'<0, and
cosh? ¢>ym ~2(r — 2m)>. Theeigenvalue 4 = 2Yand X has
the value

X = 6m*(r — 2m) ~*(cosh® ¢ + sinh? ¢), (3.19)
and the spacelike eigenvector s, of T, is given by
s, = u, + coth ¢ &* = (0, — r~ ' csch ¢,0,0), (3.20)

and is parallel to U, = [0, — (r — 3m)/(r(r — 2m)),0,0].

(v) As our final example, we look at the case in which
U, is parallel to a null eigenvector of T,,. We again use the
metric of a space-time conformal to the Schwarzschild vacu-
um solution, i.e., the metric (3.15), but we now take
U = U(z,1). In fact, we specify

U=—-1, U=—-(1-02m/n)"}, (3.21)
so that U, U® = 0. The relations (3.21) integrate to give
eV=e UTO(r—2m)*m (3.22)

With this choice of U, the dominant energy condition is sat-
isfied for all 7>2m provided that > m'’?, i.e., we must have
m>1

The EFE’s are satisfied with

u*=[(1—2m/r) =%~ Ycosh ¢,
(1 —2m/r)"%e ~ Usinh ¢,0,0],
¢°= — Q1 —2m/r) =%~ Ysinh ¢,
(1 —2m/r)y""%¢~ Y cosh ¢,0,0],
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p=2(1-2m/r) e [ (1 — m/P)e**
+(2/n (1 =2m/n],

(3.23)
p=31=2m/r) e 2V [(1 — m/P)e*

— (4/r)(1 —2m/r)],
Q=201 =2m/r) " '(1 — m/P)e Ve,
7Y = — (1 —2m/r) e Y [(1 — m/r*)e**
—(I/r)(1 —=2m/r)],
Y =1(1=2m/r) =2~ Y[¢$'(1 — 2m/r)cosh ¢
+ (¢ — 1/r + 3m/r?)sinh 4],

where ¢ = ¢(¢,7) must be chosen so that 77 and p are positive.

The eigenvalue A = 2¥ and we find that X = Q, as ex-
pected, and that Eq. (2.10) is satisfied. The null eigenvector,
u, +e,, of T,, is parallel to U_, i.e.,

u, +e, = (1—2ms/r)"%e%*U,. (3.24)

IV. CONCLUSION

We have shown that conformally Ricci-flat solutions of
the EFE’s for viscous fluid with heat conduction satisfying
the dominant energy condition do exist without imposing
any particularly stringent restrictions on the behavior of the
viscous fluid. Of the examples presented here, the FRW vis-
cous models (i) have been extensively discussed in the litera-
ture and provide interesting cosmological models as do mod-
els such as (ii). Example (iv) shows that static viscous fluid
solutions exist while example (v) appears to represent a col-
lapsing distribution of viscous fluid exterior to the Schwarzs-
child singularity.
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The properties of fluid space-times that admit a Ricci collineation vector (RCV) parallel to the
fluid unit four-velocity vector u“ are briefly reviewed. These properties are expressed in terms
of the kinematic quantities of the timelike congruence generated by u°. The cubic equation
derived by Oliver and Davis [ Ann. Inst. Henri Poincaré 30, 339 (1979)] for the equation of
state p = p(u) of a perfect fluid space-time that admits an RCV, which does not degenerate to
a Killing vector, is solved for physically realistic fluids. Necessary and sufficient conditions for
a fluid space-time to admit a spacelike RCV parallel to a unit vector »° orthogonal to #° are
derived in terms of the expansion, shear, and rotation of the spacelike congruence generated by
n®. Perfect fluid space-times are studied in detail and analogues of the results for timelike
RCVs parallel to u* are obtained. Properties of imperfect fluid space-times for which the
energy flux vector ¢° vanishes and »“ is a spacelike eigenvector of the anisotropic stress tensor
7, are derived. Fluid space-times with anisotropic pressure are discussed as a special case of
imperfect fluid space-times for which #“ is an eigenvector of 77, .

I. INTRODUCTION

A space-time admits a Ricci collineation vector (RCV)
v if
LRy =0, (L)

where R, is the Ricci tensor and %, denotes the Lie deriva-
tive along v°. In this paper, we will consider fluid space-times
and we will investigate the properties of RCVs %° = nu®,
parallel to the fluid unit four-velocity vector #*:

uauaz _ 1, 7= ( _ ?707]-7)1/'2>0
and spacelike RCVs, £ ¢ = £nf, orthogonal to u”:

nn= +1, nu*=0, £=(£,£%"*>0.

We will express the necessary and sufficient conditions for a
fluid space-time to admit a timelike RCV parallel tou“and a
spacelike RCV parallel to n° in terms of the kinematic quan-
tities of the timelike congruence of world-lines generated by
u* and the expansion, shear, and rotation of the spacelike
congruence generated by #°, respectively.

Previous work on RCVs has been undertaken by Oliver
and Davis'? who gave necessary and sufficient conditions
for a matter space-time to admit an RCV, %° = nu?, with
u® = u?, where 19, is the dynamic four-velocity. The dynam-
ic four-velocity u$ is the timelike eigenvector of the energy-
momentum tensor:

(1.2)

It is characterized by the property that an observer with
four-velocity u, measures vanishing energy flux:

ab. —_ a
T%up, = — ppup.

q7 =0. (1.3)

We will briefly review and extend the results of Oliver and
Davis. We will then establish corresponding results for
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spacelike RCVs, £ = £n”, orthogonal to #* by making use of
the theory of spacelike congruences.*”

A conservation law, valid for any RCV, was established
by Collinson.® If v* is an RCYV, then it can be verified that

(R,)., =0, (1.4)
and if Einstein’s field equations,

Ry =To + (A — 118y, (1.5)
are satisfied, then

[(T*+ (A —3Dg"), ], =0. (1.6)

Equation (1.6) plays an important part in the following the-
ory as one of the necessary and sufficient conditions for a
space-time to admit an RCV, v°.

An outline of the paper is as follows. Fluid space-times
that admit a timelike RCV, 9° = nu?, are considered in Sec.
I1. The results of Oliver and Davis'-? are extended to the case
in which w3 u$,. We investigate which equations of state of
the form p = p(u) are permitted in perfect fluid space-times
that admit an RCV, 5u° which does not degenerate to a
Killing vector (KV); Oliver and Davis® have shown that the
choice of equation of state is quite restrictive.

In Sec. I11, necessary and sufficient conditions for a per-
fect fluid space-time to admit an RCV parallel to
n’(n,u” == Q,n,n" = + 1) are derived. These conditions are
expressed in terms of the expansion and shear of the space-
like congruence of curves generated by #°. Analogues of the
properties of timelike RCVs parallel to »° are investigated.

In Sec. IV, necessary and sufficient conditions for an
imperfect fluid space-time to admit a spacelike RCV parallel
to n® are given. The special case in which n° is a spacelike
eigenvector of the anisotropic stress tensor ,,, which in-
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cludes fluids with anisotropic pressure, is considered in de-
tail.

Finally, concluding remarks are made in Sec. V.

The notation and conventions of Ellis”® will be followed
throughout.’

Il. TIMELIKE RICCI COLLINEATION VECTORS
PARALLEL TO «*

This section will be concerned with fluid space-times
that admit a timelike RCV, 5 = nu".

The total energy-momentum tensor 7, of the fluid may
be decomposed with respect to u“ as

T, = puguy + phoy + 29ty + Tap, (2.1)
where u is the total energy density measured by an observer
with four-velocity u° ¢° is the energy flux relative to
u’(q,u° =0), p is the isotropic pressure, and 7, is the
trace-free anisotropic stress tensor (m,, = 7,,, m,u’ =0,
°, = 0). We will first derive necessary and sufficient condi-
tions for any fluid space-time to admit an RCV parallel to #*
and then we will consider the special cases of a perfect fluid
(¢° =0, 7** =0) and an imperfect fluid with ¢° =0 but
7°® #0. This latter case is equivalent to considering u° = u5,.

A. Imperfect fluid space-times
Theorem 2.1: If Einstein’s field equations (1.5) are sat-
isfied, then a fluid space-time with energy-momentum ten-
J

sor (2.1) admits an RCV, 5 = nu*, if and only if
(D) hshiiry = — (u—p+2M)0,
+ %[ﬂpdat‘d + qc(dc - (l()g n),c)]hab

— 2., [y, — (logn) 5, — (log ) uy, ]

- %917',,,, - ZUC(aWb) ¢ - (2.2)

@e(oaTp) s
(i) h2g, = —3(u+3p—2A)[i, — (log ) , — Bu,]
+ (g% +q°(log ) ,)u, — (6/3 +log 7))

an - qboba - qawba: (23)

(i) [70¢° + 3(u + 3p —28)u%)],, =0, (2.4)

where @is the rate-of-expansion, o, is the rate-of-shear ten-
sor, and @, is the vorticity tensor of the timelike congruence
generated by u°.

Proof: From the definition of the Lie derivative it fol-
lows that

fnuRab = n[Rab + 2uclzc(a (log ﬂ),b) + 2Rc(auc;b) ]’
2.5)

which, using Einstein’s field equations (1.5), may be rewrit-
ten as

g'unab = 77[%(/‘ + 3p)uaub + %(l[" _—p)hrzb +2(ﬂ +p)il(aub) + 2Q(t‘vub) +2q(ai‘b)

+ 7w — (4 3p — 2M)u, (log ) 4, — 29, (log 1) 4y + (11 — P+ 2A)u gy + 20,0 + 7o)t |-

Suppose first that nu“is an RCV. Then (1.1) holds and
the right-hand side of (2.6) vanishes. By contracting (2.6)
in turn with wu® u°h?, h®, and h2h5 — }h*h,, and by
using the expansion

ua;b = Uab + (9/3)hgb + wab - i‘aub’ (27)
we obtain, respectively,
£A+3p+2(u+3p—2A)(log ) =0, (2.8)

haqy = — 3+ 3p—2A)[4, — (log ) , — (log )4, ]
—(6/3 + (log 7))q, — 4’0y, — "0y, (2.9)
B—p+ 43¢, — (08 ) o) + 3 — p + 2M)0 + {7*a,,
=0, (2.10)
and Eq. (2.2).

We will also require the energy conservation equation
along a fluid particle world line, which follows from Ein-
stein’s field equations:

L= — (u+Pp)0—TyWo® —q°, —q,i" 2.11)

Condition (2.2) was derived directly in the decomposi-
tion of (2.6). In order to determine condition (2.3), we first
obtain an expression for (uz + 3p — 2A)(log %)’ by elimi-
nating £ and p from (2.8). Substituting from (2.11) for &
into (2.10) gives
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(2.6)

r
p= —i(u+5p—4A)8 + jna,,

+49°(, — (log 1)) — ¢°0 — 4. %", (2.12)
and using (2.11) for £z and (2.12) for p, Eq. (2.8) becomes
(1 +3p—2A)(log 1)’

=(u+3p—2AM)0+2¢°, +2¢°(logm),. (2.13)
Condition (2.3) is derived immediately from (2.9) and
(2.13).

In order to derive condition (2.4), we observe that (2.8)
may be written as

(+3p—2A) +2(u+3p—2A)(log ) =0.
(2.14)

If (2.13) is used to replace one of the terms (u + 3p
— 2A)(log 77)" in (2.14), then (2.14) becomes

(u+3p—2A) ;qu° + (u+ 3P —2A)

K u 4 qut,) +2(ng*),, =0, (2.15)
from which (2.4) follows directly.

Conditions (2.2)-(2.4) are therefore necessary condi-
tions if 7« is an RCV.

Conversely, suppose that conditions (2.2)-(2.4) are
satisfied. Then if (2.2) for 77, and (2.3) for 4° are substitut-

M. Tsamparlis and D. P, Mason 1708



edinto (2.6), and (2.7) is used to expand u,,, and u,,, (2.6)
becomes

L iRy =4[+ 35+ 2(u + 3p — 20)0 + 4¢°,

+4¢°(log ) . Ju,u,
+@—p+3u—p+2A)0

+ %qc(ac - (lOg n),c) + % Traio-cd)hab ] .
(2.16)
Now, £ is given by the energy conservation equation (2.11).
In order to obtain an expression for p, we first observe that
(2.4) can be expanded as

f4+3p+ (u+3p—2A)04 (u+3p—2A)(log n)’
+2¢°, + 2(log 1) .¢°=0. (2.17)

But, by contracting (2.3) with 4° (2.13) is again obtained
and by eliminating (u + 3p — 2A) (log %) from (2.17), we
find that

B4+3p+2(u+3p—2A)0+ 44, +49°(logn) . =0.
(2.18)
On substituting from (2.11) for &z into (2.18), Eq. (2.12) for
pisagain derived. By using (2.11) for 2 and (2.12) for pitis
easily verified that the coefficients of u,u, and 4, in (2.16)
vanish and therefore nu° is an RCV. [ ]
It is easily verified that condition (2.4) is the conserva-
tion law (1.6) with v, = 5u,. Conditions (2.2) and (2.3)
may be regarded as propagation equations for ¢* and =,
along a fluid particle world line.

B. Perfect fluid space-times

The following result of Oliver and Davis® for a perfect
fluid space-time is obtained directly from Theorem 2.1 by
setting 7, = 0 and ¢° =0.

Theorem 2.2: If Einstein’s field equations (1.5) are sat-
isfied, then a perfect fluid space-time admits an RCV,
n° = nu®, if and only if

1) (u—p+2A)o,, =0,

(il) (ﬂ + 3P - 2A)(i‘a - (log n),a - 9ua) = 0’
(2.20)
(2.21)

|
Conditions (2.19) and (2.20) may be rewritten alternatively
as

(2.19)

(iii) [(u+3p—2A)7u°], =0.

either u —p+2A=0or o, =0, (2.22a,b)
either £ +3p —2A =0 or &, = (log ) , + Ou,.
(2.23a,b)

Although a conformal Killing vector (CKV) is not nec-
essarily an RCV, a special conformal Killing vector
(SCKV), 19, is defined by

fugab = 2¢gab, ¢;ab = 0’ (224)

isan RCV (Ref. 10). The necessary and sufficient conditions
for a fluid space-time to admit a CKV, 5° = qu®, are™!"2

(2.25)
(2.26)

Oap = O!

u, = (logn), + (8/3)u,,
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and the conformal factor ¢ satisfies
Y =n6/3. (2.27)

Conditions (2.25) and (2.26) are purely kinematic. If a per-
fect fluid space-time can admit an SCKV parallel to #° and
7u® is both an SCKV and RCYV then it may appear that
(2.23b) and (2.26) are inconsistent because the factor mul-
tiplying 6 in each equation is different. This is not the case.
For, with the aid of Einstein’s field equations it can be
shown'? that if a perfect fluid space-time admits an SCKV,
nu’, then

either 6=0 or u +3p—-2A=0. (2.28)

When =0, (2.23b) and (2.26) agree. When & #0, the
SCKV belongs to the subset of RCVs for which
1+ 3p — 2A =0and (2.23b) does not apply.

A material curve in a fluid is a curve that always consists
of the same fluid particles and therefore it moves with the
fluid as the fluid evolves; it is sometimes said to be “frozen-
in” to the fluid.

Theorem 2.3: Vortex lines are material lines in a perfect
fluid space-time that admits an RCV, #°=nu? if
p+3p—2A50 and also if z#+ 3p—~2A =0 provided
i+ A#O0.

Proof: 1t follows from (2.23) that if u + 3p — 2A+#0
then

i, = — (log (1/m) sk, (2.29)
and therefore 7' is an acceleration potential. If
u+3p—2A =0 and u + A#O then, since the fluid is a
perfect fluid,?

P
r=epr ‘f )cc(,u-+-A)‘”2
u

Po P

(2.30)

is an acceleration potential. Ellis® has shown that, in a rota-
tional fluid which admits an acceleration potential, vortex
lines are material lines. ]

This result is of interest because it shows that vortex
lines may be material lines in a perfect fluid even though the
fluid does not possess an equation of state of the form
p=p(u); the vortex lines are material lines because of a
symmetry property of the flow.

The following theorem is due to Oliver and Davis,? but
generalized to include a nonzero cosmological constant. It
follows directly from Theorem 2.2 by verifying with the aid
of the energy and momentum conservation equations for a
perfect fluid,

(2.31)
(2.32)

£+ (u+p)0=0,
(L+pi, = —pyhs,

that conditions (2.20)—(2.22) are satisfied. We state the
theorem here in order to compare it with the corresponding
result derived in Sec. III for an RCV orthogonal to #°.

Theorem 2.4: Consider a perfect fluid space-time. If Ein-
stein’s field equations are satisfied and if the equation of state
of the fluid is

P=pu+2A, pu+ A#0Q,
then

(2.33)
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n°=u/(u + A)'"? (2.34)

isan RCV.
[ ]

The next theorem is similar to that established by Oliver
and Davis' for a CKV without the restrictions
u+3p—2A#0and p#pu + 2A.

Theorem 2.5: Consider a perfect fluid space-time such
that ¢ + 3p —2A#0 and p#u + 2A. If Einstein’s field
equations are satisfied and 7° = nu“ is an RCV and

=0,
then

either (i) 8 = 0 and #“ is a Killing vector (KV),

or (ii)  #0and w =0and 6 ,h 2 = 0.

Proof: Suppose first that 8 = 0. Since p#u + 2A we

have o,, =0 and since #, =0 a direct calculation using
(2.7) gives

u(a;b) = (0/3)hab = O'
Hence, #°is a KV.

Second, suppose that & 0. Since u + 3p — 2A#0 and
4“ = Q it follows from (2.23) that

(2.35)

(2.36)

Ou, = — (log 1), (2.37)
and therefore

U0, + 0uy,,=0. (2.38)
Projecting on (2.38) with 4 %h ? gives

bw,, =0, (2.39)

and since 8 #0 it follows that w = 0. Projecting on (2.38)
with ©°h * and noting that &, = O gives

6,h" =0, (2.40)

which establishes the theorem. [ ]

The foregoing result is another example of a shear-free
perfect fluid for which it is necessary that w8 = 0.

We outline the proof of the following theorem due to
Oliver and Davis? and then consider the solution of the dif-
ferential equation (2.41) below for the equation of state
p = p(u). It is an extension of the result (2.27) and (2.28)
that if a perfect fluid space-time can admit an SCKV parallel
to u® then the SCKV is necessarily a KV unless
M4 3p—2A =0. A corresponding result for a spacelike
RCYV orthogonal to #“ will be obtained in Sec. III.

Theorem 2.6 (Oliver and Davis? ): If Einstein’s field
equations are satisfied and if a perfect fluid space-time with
equation of state p = p(u) admits an RCV, 5° = nu“, then
either 7” degenerates to a KV or

(p +p)d—p=-1—(u+5p—4A). (2.41)
dg 3

Proof: We suppose that

(p +p)—d—’iaéi(u +5p —4A) (2.42)
du 3

and show that %, =0. Since p=pu+2A and

P = —}p + 3A are particular solutions of (2.41) it follows

that . if (2.42) holds, then u—p+2A#0 and

t+ 3p —2A#0. Hence (2.22b) and (2.23b) are satisfied
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and a direct calculation with the aid of (2.22b) and (2.23b)
gives

(MU ).y = (9/3)(h,y — 3u,u,)b. (2.43)
We must now obtain 8 which can be derived from (2.21),
(2.23b) contracted with #, the energy conservation equa-
tion for a perfect fluid (2.31), and the equation of state

p=p(u) covariantly differentiated along a fluid particle
world line:

A4+3p+ (u+3p—2A)0+ (logn)) =0, (2.44)
(log 7) =6, (2.45)
a+ (p+p)@=0, (2.46)
_9
= fi. (2.47)

By eliminating &, p, and (log )" from (2.44)—(2.47), we
obtain :

[(p w02 _ Ly 4A)]o —0,  (248)
duy 3

and (2.42) implies that 8 = 0. Hence, from (2.43), yu°is a

KV, which establishes the theorem. u
Wehaveobservedthatp = u + 2Aandp= —ju +3A

are particular solutions of the differential equation (2.41).

Consider now the general solution of (2.41). For simplicity

we will take A = 0; (2.41) then reduces to

dp _ pu+5p
o . (2.49)
du  3(u+p)
If A+#0, the change of variables
P=p—A p=u+A (2.50)

reduces (2.41) to the homogeneous form (2.49) inpand
and the following method of solution would also apply. The
right-hand side of (2.49) is a homogeneous function of de-
gree 0 in p and i and we therefore make the standard trans-
formation from (p,u) to (v,u) where v is defined by

p=uu.
Equation (2.49) becomes
_dl_ GBv+1)(1 —v)
'ud,u T 34w
The variables are separable in (2.52); its solution is
(14 30)/(1 —v)’u? = 1/a, (2.53)

where « is a constant. The solution (2.53) was derived by
Oliver and Davis.? On transforming back to (p,u), (2.52)
becomes

GBp+p)/(p—pY=1a. (2.54)
We will assume that u > 0. Consider first solutions with

a <0.From (2.54),ifa < Otheneitherp>puofp < — u/3.1f
P> U, then by rewriting (2.49) as

du 3(p+p)
we see that 1 <dp/du<} If —p<p< — u/3, then by re-
writing (2.49) as

2 1
dp _ 1 20+l (2.56)

dp 3 p+u

(2.51)

(2.52)

(2.55)
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weseethat — o <dp/du < — Jandif — w0 <p< — g then
by rewriting (2.49) as

a9 _5__4

du 3 3(u+p)
we see that § <dp/du < . Thus if a <0, either dp/du > 1
and therefore the speed of sound relative to the fluid exceeds
the speed of light or dp/du < — § and the fluid is unstable
against mechanical perturbations.'* We will therefore not
consider further solutions with a < 0.

Consider next solutions with @>0. This includes the
particular solutions p =y and p = — u/3 that correspond
toa = 0and a = «o, respectively. From (2.54), if >0 then

— pu/3<p<p. From (2.49) and (2.55) we see that for
— u/5<p<pu we have 0<dp/du<1, and from (2.49) and
(2.55) it follows that for — u/3<p< —p/5 we have
— 1<dp/du<0. The case a0 therefore includes all solu-
tions that satisfy the physically reasonable conditions,

(2.57)

u>0, p>0, 0<%<1, (2.58)
du

as well as all solutions which satisfy simply 0<dp/du<1.
To obtain the solutions for @ >0 we rewrite (2.54) as the
following cubic equation for p:

PP =3up +3a+pp+pla—p*) =0,  (2.59)
The transformation

p=P+pu (2.60)
takes (2.59) to the reduced form

P4+ 3aP+4au=0. (2.61)
In general, for the cubic equation

X 4+px+y=0, (2.62)

where and y are constants, the discriminant D is defined as
D= —4p° 27/ (2.63)

If B and y are real and if D3>0 then there are three real roots
while if D <0 there is one real root and two complex conju-
gate roots. For the cubic equation (2.61),

D= —108a%(a + 4p?). (2.64)

When a =0, D =0and from (2.61), P=0,ie,p=u,isa
multiple root of multiplicity three. When o >0, D <0 and
there is one real root and two complex conjugate roots. To
obtain this real root let

P=2JaQ, a>0, (2.65)
and (2.61) becomes

40° +30= — Qu/Va). (2.66)
If we let

Q@ =sinh ¢ (2.67)
and use the identity

4 sinh® ¢ + 3 sinh ¢ = sinh 3¢ (2.68)
then (2.66) reduces to

sinh 3¢ = — Qu/Ja). (2.69)

Hence
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¢ = —}sinh~'Qu/Va) (2.70)

and by transforming back using (2.67), (2.65), and (2.60)
we find that

p=p—2Jasinh[fsinh~'(2u/Va)], a>0.
Equation (2.71) can be written equivalently as
2\ 1/2
p=p—Na sinh[iln(—Zi + (1 + itﬁ-) )], a>0.
3 Ja a
(2.72)

We now consider some properties of the equation of
state (2.71). With the aid of the series expansions'>

2.71)

sinh~'x = x — x*/6 + O(x®) as x—0, (2.73)

sinh x = x + x3/6 4+ O(x*) as x-0, (2.74)
it can be verified that
p= — (u/3) + 8(u*/a) + O(u’) as u—0, a>0. (2.75)

The asymptotic behavior of p for large i is most easily deter-
mined from (2.72). For large p,

p=u — e sinh[In((4u/Va)' )], (2.76)
and therefore for large ,

p=pll - @Ja/m)”]. 2.7
Hence,

p=pu+0W"?) as p- . (2.78)

The derivative dp/du is most easily calculated using (2.49)
with p given by (2.71):

dp _ 3u— SJasinh[{sinh~'(2u/Va)]
e 3 —Ja sinh[{sinh = (2u/a) ])

Asymptotic expressions for dp/du can be determined using
(2.75) and (2.78). It is easily verified that

(2.79)

) __1 (2.80)
dﬂ =0 3

which is independent of a(a > 0) and
_a_7p_=1+0(#_2,3) as f— co. (2.81)

du

Graphs of p plotted against u for a selection of values of
a in the range 0<a< « are presented in Fig. 1. The family of
curves is bounded by the straight-line graphsp =y (@ = 0)
and p= — u/3 (@ = «). The pressure p decreases from
zero at 4 = 0 and is negative for sufficiently small values of u
for each a >0 in agreement with (2.75) and (2.80). The
pressure eventually increases with increasing u and becomes
positive for sufficiently large u for each O<a < w.

Graphs of dp/du plotted against u for the same values of
a as used in Fig. 1 are presented in Fig. 2. The family of
curves is bounded by the straight lines dp/du =1 (a =0)
anddp/du = — ] (a= «). ForeachO<a < w, dp/du in-
creases monotonically from — jatu=0to + latu = oo,
consistent with (2.80) and (2.81). For sufficiently small val-
ues of i, dp/dy < 0 for each @ > 0 and the fluid is unstable to
mechanical perturbations. However, for sufficiently large
values of 1, 0 < dp/du<1 for each 0<a < oo; the fluid is sta-
ble against mechanical perturbations and the speed of sound
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FIG. 1. The pressure p, given by Eq. (2.71), plotted against u for a =0,
0.01,0.1, 1, 5, 10, 25, 50, 100, 500, and . The straight-line graphs, @ =0
and a = o, correspond to the equations of state p =y and p= —pu/3,
respectively.

relative to the fluid, (dp/du) /%, does not exceed the speed of
light.

The curves p = 0 and dp/du = 0 in the (a,u) plane for
a >0 and p > 0 are plotted in Fig. 3. For a given value of
a > 0, the values of u for which p> 0 and dp/du >0 can be
determined from Fig. 3. We conclude that the only solution
of (2.49) which satisfies the physically reasonable condi-
tions (2.58) for all values of u > 0 is p = u corresponding to
a = 0, although all solutions with 0 < @ < « eventually sat-
isfy conditions (2.58) for sufficiently large u.

C. Fluid space-times with g*=0 but 7*°#0

Consideration of a fluid space-time with ¢ =0 but
7 #£0 is equivalent to taking #® = u, where u3, is the dy-
namic four-velocity. The following theorem follows directly
from Theorem 2.1.

Theorem 2.7: If Einstein’s field equations (1.5) are sat-
isfied then a fluid space-time with energy-momentum tensor
(2.1), with ¢° = 0 but 7*° #0, where ¢° and 7°° are mea-
sured relative to the four velocity #% admits an RCV,
7° = nu’, if and only if

(1) hfzhzf.rcd = - (,u' _P+ 2A)aab +%(770dacd)hab

4 <
— 30T — 20Ty © — 20c(a i)

(2.82)

c(a
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du a=0
1.0 0.01
0.1
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0.81 5
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0.61 25
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Q@ = 00
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FIG. 2. The pressure gradient dp/du, given by Eq. (2.79), plotted against
for =0, 0.01, 0.1, 1, §, 10, 25, 50, 100, 500, and . The straight-line
graphs, @ = 0 and @ = «, correspond to the equations of state p = & and
p= — u/3, respectively.

p=0

101

34

T T T T T T T T | E—
[} 10 20 30 40 50 60 70 860 90 100
(04

FIG. 3. The curves p = 0 and dp/du = 0 in the (a,u) plane for a> 0 and
>0, where p and dp/dy are given by Eqgs. (2.71) and (2.79), respectively.
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(ii) (& +3p—2A)[#, — (log ), — Ou,] =0,
(2.83)

(iii) [(u+3p—2A)9u°], =0, (2.84)

where 6, 0, and w,, are the rate of expansion, the rate-of-
shear tensor and the vorticity tensor of the timelike con-
gruence generated by u°. B

Equation (2.83) can be written alternatively as
(2.23a,b). A nonzero 7, enters into (2.82) to (2.84) only
through condition (2.82); (2.83) and (2.84) are the same as
for a perfect fluid space-time. If ¢ + 3p — 2A#0thenn ~'is
an acceleration potential and if the fluid is rotational then
vortex lines are material lines in the fluid. This is a conse-
quence of the symmetry of the flow and is not due to a phys-
ical property of the fluid; in general a fluid with 7, #0 [or
even a perfect fluid if p#p(u)] does not admit an accelera-
tion potential and the vortex lines are not generally material
lines.

The phenomenological equation of state

A0, (2.85)

where A is the coefficient of shear viscosity, is necessary if the
rate of entropy production is never negative.”®* We now es-
tablish the following result which in some ways corresponds
to Theorem 2.6 for a perfect finid.

Theorem 2.8: If Einstein’s field equations are satisfied
and the fluid space-time admits an RCV, 7* = nu°, and if

Tap = — AGgs,

p=p(y) but d—paé - —1-, (2.86)
du 3
q°=0, (2.87)
Ty = — A0y, A>0, (2.88)
where ¢° and 7, are measured relative to ¥ and
either 3(u +p)§£=,u+ 5p—2A (2.89)
I
. dp i )
excluding —= — —
( g du 3
or8=0, (2.90)

then o,, = 0and the fluid has a perfect fluid energy-momen-
tum tensor. For the case @ = 0, the RCV reduces to a KV,

Proof: Since it is assumed that dp/du# — } it follows
that p + 3p — 2A#0 and therefore (2.23b) is satisfied.
Equations (2.44), (2.45), and (2.47) again hold but in place
of (2.46) the energy conservation equation now takes the
form

£+ (U +p)0+ 70 =0, (2.91)

By eliminating &, p, and (log )" from (2.44), (2.45),
(2.47), and (2.91) we obtain

[/z +5p—4A —3(u + p)d—”]o - (1 + 3d—p)m0"”,
du d
(2.92)
and since 7, = — Ao, it follows that
d
[ﬂ +5p—4A —3(u +p)d—p]9= - 2/102(1 + 3——p—) ,
du du
(2.93)
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where o” = §7,,,0°. Now, A #0and dp/du# — }and there-
fore if either (2.89) or (2.90) is satisfied it follows from
(2.93) that o* = 0 and hence 0, = 0.

When o, =0 and (2.23b) is satisfied, (2.43) is again
valid and therefore if @ = 0 the RCV reduces to a KV.

|

An equation of state that satisfies (2.86) and (2.89) is
p=p+2A. If a fluid space-time with equation of state
p=p ~+ 2A admits an RCV, ° = 5u*, and if the fluid is
viscous (A > 0) and ¢* = O then it will be shear-free and have
a perfect fluid energy-momentum tensor. In comparison,
from (2.19), a perfect fluid space-time which admits an
RCV, 7° = nu° need not necessarily be shear free when
p=p+2A.

1li. SPACELIKE RICCI COLLINEATION VECTORS
ORTHOGONAL TO v*: PERFECT FLUID SPACE-TIMES

We now consider the properties of fluid space-times that
admit a spacelike RCV, £, orthogonal to u*:

§°=£&n®, nn"= + 1, 3.1)
For an imperfect fluid, the theory of spacelike RCVs orthog-
onal to #° is more complex than that for timelike RCVs par-
allel to #° one reason being that whereas ¢, =0 and
7u° = 0, in general g, n°#0 and 7, n® #£0. Hence, instead
of first considering the most general case of an imperfect
fluid and then specializing to a perfect fluid, as we did for
timelike RCVs in Sec. II, we will consider first perfect fluid
space-times in this section and then consider the more com-
plex case of imperfect fluid space-times in Sec. IV.

We will express the necessary and sufficient conditions
for a fluid space-time to admit an RCV parallel to #° in terms
of the rotation, expansion, and shear of the spacelike con-
gruence generated by n°. To measure the deformation of the
congruence generated by #° at any given point P an observer
with four-velocity w® orthogonal to n* at P must be specified.
Since n,u° = 0, an observer comoving with the fluid with
four-velocity #° may be employed at Pand in the subsequent
theory a comoving observer, #° will always be used. Once
the observer has been specified at any one point of the con-
gruence, the observers employed at all other points along the
congruence cannot be arbitrarily assigned; their four-veloc-
ities must satisfy a transport law derived by Greenberg.*~* It
follows from the Greenberg transport law that if a comoving
observer with 4-velocity u?is chosen at any one given point P
then the observers employed at all other points along the
congruence can be comoving observers with four-velocity u*
if and only if

n,u’=0Q0.

(3.2)

where an overhead star denotes covariant differentiation
along an integral curve of n% for example,

As=4,n, (3.3)
In the following theory it will not be required to employ
comoving observers all along the congruence and (3.2) need
not hold; only the observer at the given point P will be co-
moving. It can be shown that (3.2) is the necessary and
sufficient condition for the integral curves of n°(n,u” =0,

. 3 *
hen® =" — (n,#%)n°,
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n,n" = + 1) to be material curves in the fluid** and there-
fore comoving observers ¥° can be employed all along the
n-congruence if and only if the curves of the congruence are
material curves. For the following theory it will be conven-
ient to define

Ne=hin®— ¥+ (n, &% n. (3.4)
The rotation tensor %, the expansion &, and the

shear tensor %, of the spacelike congruence generated by
n*® as measured by an observer with four-velocity u* are

7 =P2P:n[c,d I 3.5)
& =p®n,,, (3.6)
yab =p2pz”(qd) - %g.pab’ (3'7)

where p°® is the projection tensor that projects onto the two-

space orthogonal to 4° and »n“:
P =g+ uu®—nn® p®u,=0, p*n,=0. (3.8)

The covariant derivative of n, can be decomposed as

na;b = ‘@ab + %gpab + ‘yab + ;ianb - ﬁanb + ua (n’ut;b)

+ (n'u,) u uy — (n,EYu,n,, (3.9)

where #,, €, and ., are measured by an observer with
four-velocity u°.

The following theorem corresponds directly with
Theorem 2.2.

Theorem 3.1: If Einstein’s field equations (1.5) are sat-
isfied, then a perfect fluid space-time admits an RCYV,
£=£&n°(n,n" = + Lin,u"=0) if and only if
(i) (B +3P-—-2M)w,n'=}(u—p+2A)N,, (3.10)
(i) (u—p+20)5, =0, (3.11)
(iil) (u—p+2A)[#, + (log§), —4&n,] =0, (3.12)
(iv) (u—p+2M) (4% 4+ n4') =0, (3.13)
(v) (e —p+2A)n°], =0, (3.14)
where N “is defined by (3.4) and & and .%,, are the expan-
sion and shear of the spacelike congruence generated by n° as

measured by an observer with the fluid unit four-velocity .
Proof: From the definition of the Lie derivative,

*
L eaRopy =& [R a +20°R (108 &) 4y + 2R (1 |-
(3.15)

With the aid of Einstein’s field equations for a perfect fluid,
(3.15) may be rewritten as

L Ry =E[JE+3D) + 1 — Pk,
+ 201 + P) (B uyy — U ' syn,)

+ (@—p+2A)(ngy +nu(0g8) )],
(3.16)

Suppose first that £n7is an RCV. Then (1.1) is satisfied.
The right-hand side of (3.16) is therefore zero and by con-
tracting it in turn with 2°u®, u°n®, u°p"™, n°n®, n°p%, p®, and
P p™ — p“’p* the following seven equations are derived:
L4+3P+2(u+3p—2A)n,4°=0, (3.17)

(k—p+2A)((log &) +u, %) =0, (3.18)
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y(u—p+20)hth, — (u+p)(E, —n,#%)n,)

+§(p + 3p — 2A)pin'u,, =0, 3.19)
£—P+2(u—p+2A)(log)* =0, (3.20)
(u—p+2M)pi [, + (log £),] =0, (321
A-P+(u—p+2M8 =0, (3.22)
(u—p+2M)7,, =0. (3.23)

We will also require the momentum conservation equa-
tion for a perfect fluid, (2.32), contracted with n*:

P+ (u+p)n,i®=0. (3.24)

The momentum conservation equation (2.32) followed
from Einstein’s field equations.
(i) Condition (3.10) is derived from (3.19). We have

n'u, =2n'u, |+ 4,
= —2w,n" — (n,u")u, + #,, (3.25)

and by substituting from (3.25) into (3.19), (3.10) follows
directly.

(ii) Condition (3.11) is given by (3.23).

(iii) To derive (3.12), we first expand (3.21) and use
(3.18); this gives

(u—p+2A) [fz',, + (log§), — (log £)* n,] =0.
(3.26)

But by subtracting (3.22) from (3.20) it follows that
(g —p+2A)JogH)* = —p+2M) 7, (3.27)

and by substituting from (3.27) into (3.26), (3.12) isimme-
diately derived.

(iv) To derive (3.13), we first substitute (3.24) for }
into (3.17) to obtain

L= (u—=3p+4AM)n, i’ (3.28)

By replacing }5 and ﬁ in (3.22) by (3.24) and (3.28), respec-
tively, (3.13) is obtained.

(v) Consider the final condition (3.14). Substitute
(3.24) and (3.28) into (3.20); this gives

(#—p+2A)(og §)* = — (. —p + 2A)n, i,
(3.29)

and subtract (3.29) from twice (3.27) to obtain
(u—p+2A)(og §)* = (u — p+ 2A)(& + ni”).

(3.30)
But from (3.6),
& + n,u" =n,, (3.31)
and therefore (3.30) becomes
(p—p+2AM)(Jog&)* = (u—p+2A0°,.  (3.32)

If one of the terms (u — p + 2A)(log £)* in (3.20) is re-
placed by (3.32) then (3.20) may be written as

(/‘ —P + ZA),agna + (ﬂ “‘P + 2A) (§,ana + gna;a) = 0’
(3.33)
from which (3.14) follows directly.
Hence, if £ = £n° is an RCV then conditions (3.10)-
(3.14) are satisfied.
Conversely, suppose that (3.10)~(3.14) are satisfied
and Einstein’s field equations hold.

M. Tsamparlis and D. P. Mason 1714



Using (3.9) for n.,, (3.11) and (3.12) for
(u—p+2A)(log &), Eq. (3.16) becomes
& nRay =& [ +3D)u,us + 3 — P,
+ 3 —p+2AM)(Eh,y —2u,N,))

— (4 3p—2A)u, (' yyn, — )]
(3.34)

Further, by using (3.25) for n'u,, and (3.10) for

(u + 3p — 2A)w,, n' and by replacing & by n, 4’ with the aid
of (3.13), (3.34) reduces to

L uRos =€ [WE+ 3B+ 201 + 3p — 2M)n, iV u,

+E—B -2 —p+2M)n,ih, ). (3.35)

Now, ﬁ is expressed in terms of n,#’ through (3.24). To
obtain £ in terms of n,4' we use the remaining condition
(3.14), which may be expanded as

A—D+2(u—p+2A)(logé)* =0. (3.36)
But if (3.12) is contracted with »n° we obtain, with the aid of
(3.13),

(u—p+2M)(Jog)*= — (u—p+2A)n,4" (3.37)
and therefore (3.36) becomes

A—b—=2u—p+2M)ni'=0. (3.38)

By eliminating } from (3.38) using (3.24), Eq. (3.28) for &
is again derived. It is easily verified with the aid of (3.24) and
(3.28) that the right-hand side of (3.35) vanishes and there-
fore £ = £n”is an RCV. [ |
It is easily verified that (3.14) is the conservation law
(1.6) for the special case of a perfect fluid and v, = £n,,.
Conditions (3.11)—(3.13) may be written alternatively as

either p =y + 2A

S =0, (3.39a,b)
or {f, = — (log ), +1&n,, (3.40a,b)
nuf= —1%. (3.41a,b)

One of the necessary and sufficient conditions for a fluid

space-time to admit a CKV, &°=¢&n(n,u’=0,
nn= +1),is’
nit= +1%. (3.42)

Equation (3.42) is purely kinematic. If a perfect fluid space-
time can admit an SCKV orthogonal to #° and £n” is both an
SCKY and an RCV it may appear that (3.41b) and (3.42)
are inconsistent because of the difference in sign. This is not
the case because it can be shown'>!® using Einstein’s field
equations that if a perfect fluid space-time admits an SCKV,
£° = £&n®, then

either £ =0 or p=yp + 2A. (3.43)

When & =0, (3.41b) and (3.42) agree. When & #0, the
SCKY belongs to the subset of RCVs for which p = 1 + 2A
and therefore (3.41b) does not apply.

The following theorem corresponds to Theorem 2.3 for
an RCYV parallel to #°. )

Theorem 3.2: Suppose that a perfect fluid space-time
admits an RCV, £?=£&n(n,n" = + lL,n,u° =0) and that
Einstein’s field equations are satisfied.
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(a) @ =0. Then either p=pu + 2A or the integral
curves of n? are material curves in fluid.

(b) @#0.

() Ifp=pu+2Abuty + A#0thenn’*= + &°/wand
the vortex lines are material lines in the fluid.

(ii) If the integral curves of n° are material curves and
L&+ 3p — 2A#0, then n° = + 0/o.

(iii) If n* = + w°/w, then the vortex lines are material
lines if p#p +2A and also if p=gu + 2A provided
©+ A#O0.

Proof: All of the results are established from (3.10).

(a) @ =0. It follows from (3.10) that when & =0,
either p=pu 4+ 2A or N°=0. When N° =0 the integral
curves of n® are material curves in the fluid.**

(b) w#0.

() fp=p +2A then g + 3p — 2A =4(u + A) #0.
Hence, from (3.10),

W n =0, (3.44)

and since @, = 7, u* we find by contracting (3.44) with
71w, u, that

n’ = [(o,n")/e’ o (3.45)

Since both n°#0 and w®7#0 it follows that n® = + 0%/ w.
Also, since the fluid is a perfect fluid and p = u + 2A,

r=exp(Jp ‘j{) )oc(,u—}—A)l/z#O
o

Po p

is an acceleration potential and therefore the vortex lines are
material lines in the fluid.®

(ii) If the integral curves of n® are material curves then
N¢=0 (Refs. 4 and 5). Hence, since u + 3p — 2A#0,
(3.44) is again obtained from (3.10) and therefore
n‘= + 0% w.

(iii) If n* = + w°/w and p#p + 2A then N° =0 and
the vortex lines are material lines. If p=u + 2A and
4 + A#0 then from (i) vortex lines are material lines.

(3.46)

|
The following theorem corresponds to theorem 2.4 for
an RCV parallel to u°.
Theorem 3.3: Consider a perfect fluid space-time. If Ein-
stein’s field equations are satisfied and if the equation of state
of the fluid is

p=pu+2A, (3.47)
and if

u+ A#0 (3.48)
then

(a) w = 0. Any vector orthogonal to u° is RCV.

(b) 5#0. A vector orthogonal to u° is an RCV if and
only if it is parallel to »°.

Proof: The only condition of Theorem 3.1 not identically
satisfied when p = u + 2A is (3.10) which reduces to

1+ MNo,n =0. (3.49)

(a) @ =0. If @ = 0 then (3.49) is identically satisfied
and any vector £ “ = £n° orthogonal to #” is an RCV.

(b) w#0. Suppose first that &n®(n,u®=0,
n,n®= + 1) isan RCV. Then, if 4 + A#0 it follows from
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(3.49) that w,,n’ = 0 and therefore (3.45) is satisfied; thus
n° is parallel to »°.

Conversely, suppose that n°= w’/@. Then since
w,n' =0, (3.49) is satisfied and therefore £n° is an RCV.

N

As asimple example of Theorem 3.3, consider the Godel
universe which is a rotational perfect fluid space-time that
satisfies”®

P=p+2A, p+ A=a*#0. (3.50)
Thus any vector parallel to w® is an RCV of the Gédel metric

and any RCV orthogonal to #” admitted by the Gode! uni-
verse must be parallel to »°. For the Gédel universe®

o® = (a/V2)8%, (3.51)

Any vector of the form £63 is therefore an RCV of the Gddel
metric. It is well known that 85 is a KV of the Gédel metric
which is a special case of an RCV,

We now consider perfect fluid space-times with
p#u1 + 2A. The following theorem corresponds to Theorem
2.5 for an RCV parallel to #°.

Theorem 3.3: Consider a perfect fluid space-time such
that p#u + 2A and u + 3p — 2A5#0. If Einstein’s field
equations are satisfied and £ “ = &n®(n, u* =0 n"= + 1)
is an RCV such that

Be=0, (3.52)

and if the integral curves of n° are material curves in the
fluid, or equivalently when & #0 if n° = ©°/w, then

either (i) € = 0and n°is a KV,
or (ii) ##0and #,, =0and & ,p; = 0.

Proof: (i) & = 0. Using (3.9) for n,, and (3.25) itcan
be verified that

Miapy =3&Dgy + L as + ﬁ(anb) —u,N,

a = const.

—2u w40 — (n, 4" )u,u,. (3.53)
But since p#u + 2A it follows from (3.11) and (3.13) that
Fa =0and n,it' = —}& = 0. Also, if the integral curves
of n® are material curves then N*=0 and from (3.10),
w,n' =0. [Alternatively, when w30, if n° = w“/® then
o,n' =0 and from (3.10), N*=0.] Since & =0 and
#° =0, (3.53) reduceston,,,, = Oand thereforen’isaKV.
(ii) & #0. Since p#u + 2A and #° = 0, it follows from
(3.12) that

En, =2(log &) ., (3.54)
and therefore

%5, + &nyp ;=0 (3.55)
Projecting on (3.55) with p2p} gives

ER, =0 (3.56)

and therefore #,, = 0 since & #0. Projecting on (3.55)
with n°p? and using /° = 0 yields
% ,p°=0. B(3.57)
If a perfect fluid space-time can admit an SCKV orthog-
onal to u° then, since®

Y=IiEF (3.58)
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where ¥ is the conformal factor, it follows from (3.43) that
the SCKYV is necessarily a KV unless p = u + 2A. We now
consider the extension of this result to an RCV. The follow-
ing theorem corresponds to Theorem 2.6 for an RCV paral-
lel to u°.

Theorem 3.4: Suppose that Einstein’s field equations are
satisfied. If a perfect fluid space-time with equation of state
©=p(p) admitsanRCV, £% = &n“(n,u® =0,n,n°= + 1)
and if the integral curves of #° are material curves in the
fluid, or equivalently when 0w #0if n° = »°/e, then either £ °
degenerates to a KV or

(u +p)~4’i=3p—#——4/\- (3.59)
dp

Proof: We suppose that

(u +p)%f;—;é3p—,u—4A. (3.60)

and show that £, =0. Since pg=p—2A and
f = — 3p + 2A are particular solutions of (3.59), it follows
that if (3.60) holds then u—p+2A%#0 and
#+3p—2A#0. Since p—p+2A5#0, Egs. (3.39b),
(3.40b), and (3.41b) are satisfied. If the integral curves of »°
are material curves then N? =0 and from (3.10), since
#+ 3p — 2A#0, we havew_, n* = 0. [If; alternatively, when
w#0, n° = w’/w then w,n' =0 and from (3.10), since
p—p+2A#£0, we have N?=0.] Hence with the aid of
(3.53) a direct calculation gives

(gn(a);b) =%§g(hab +uaub)- (3.61)

It remains to determine #. Equation (3.14) when ex-
panded is

A—D+ (u—p+2A)Nlog H)* +n°,)=0. (3.62)
But (3.40b) contracted with n“ gives

(log £)* = 1%, (3.63)
and also from (3.6) and (3.41b) we have

n, =1%. (3.64)
Equation (3.62) therefore becomes

=P+ @u—p+2M)&=0. (3.65)
Also, (3.24) and (3.41b) give

b-iu+p)&=0. (3.66)

Finally, u = u(p) covariantly differentiated along an inte-
gral curve of n“ yields

s A
P dpﬁ-

Equations (3.65), (3.66), and (3.67) are three homoge-
neous equations for ﬁ, 2, and €. On eliminating ﬁ and ﬁ we
find that

(3.67)

[(/4 +p)%%+,u~3p+4l\]g=0. (3.68)

and therefore (3.60) implies that & = 0. Hence, from
(3.61), £n° is a KV which establishes the theorem.

|

We have noted that y =p—2A and g = —3p+2A

are particular solutions of the differential equation (3.59).
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We now consider the general solutioﬁ of (3.59). We will
assume that uz + p#0 and for simplicity we will take A = 0.
Equation (3.59) reduces to

du _3p—u

dp p+p
If A0 the change of variables (2.50) reduces (3.59) to the
homogeneous form (3.69) in p and & and the following
method of solution would still apply. The right-hand side of
(3.69) is a homogeneous function of degree Oin z and p. We
therefore make the standard transformation from (u,p) to
(v,p) where

(3.69)

U =up. (3.70)
Equation (3.69) becomes
& _(1-9@+v) (3.71)

dp 14+
The variables are separable in (3.71) and its solution is
Pl—v)(v+3) =5, (3.72)

where S is a constant. Expressed in terms of  and p, (3.72)
is

(p—p)(pn+3p) =3B, (3.73)
which may be rewritten as the following quadratic equation
for p:

3P —2up— (W +B)=0. (3.74)

Whereas the differential equation (2.49) gave rise to a cubic
equation for p, (3.69) has produced a quadratic equation for
p. The two solutions of (3.69) are

172
Py =%i%(ﬂ2+%ﬁ) . (3.75)
When u =0,
p. (0)= +(B/3)' (3.76)

and therefore for p to be real when u = 0 we require 50.
We will consider only £>0 and hence from (3.73), either
p>p or p< — u/3. The only solution that satisfies the physi-
cally reasonable condition, p =0 when u =0, is obtained
when f=0andisp =pu.

Graphs of p . and p _ plotted against x for a selection
of values of 80 are presented in Fig. 4. The solution p , is
positive for all 8> 0 and all >0 and this family of graphs is
bounded below by the straight linep ., = x(8 = 0). The so-
lutionp _ is negative for all 8> 0 and all £>>0 and this family
of graphs is bounded above by the straight line

p_ = —uB=0).
From (3.75) we have
G 1, W (3.77)
d 3 3(u? 172’
u w+3iB
and
T . (3.78)
d,u p=0 3

which is independent of 8. From (3.69) it follows that if
4>0 then dp/du >0 if either p>u/3, which is satisfied only
by thep , solution, or p< — p which can be attained only by
the p_  solution. From (3.75) we see that

1717 J. Math. Phys., Vol. 31, No. 7, July 1990

50 25 10

T L T T T T T T T T

0 1 3 4 ] 8 7 8 ] 10

FIG. 4. The pressures p, and p_, given by Eq. (3.75), plotted against
for =0, 1, 10, 25, 50, and 100. The two straight-line graphs for 8 =0
correspond to the equations of statep, =pandp_ = —pu/3.

P_<—pifu} B thusdp _ /du>0if O<u<i B V2

Graphs of dp .. /du plotted against u for a selection of
values of 50 are presented in Fig. 5. The family of graphs
of dp,/du is bounded by the straight lines
dp, /dp=1(=0)anddp /du=14(B= «) and there-
fore the fluid is stable against mechanical perturbations
(dp , /du >0) and the speed of sound relative to the fluid
does not exceed the speed of light (dp , /du < 1) forall u>0
and £>0. The family of graphs of dp _ /duis bounded by the
straight lines dp_/du= —4{(f=0) and dp_/du
= }(B = x). Wehave observed that dp_/du>0, and there-
fore the fluid is stable against mechanical perturbations, if
for given B, O0<u<} B /. For this range of u, the speed of
sound relative to the fluid v, does not exceed the speed of
light:

172
v, = (ip___) <L .
du V3
We conclude that p , satisfies the physically reasonable
conditions (2.58) for all 550 and g >0, but if we insist that
p(0) = 0, then we must take S = 0 and p = u. The solution
p_ isnegative forall f>0and u>0 [except that p_ (0) =0
when 8= 0] and dp _ /dp <0 and the fluid is unstable to
mechanical perturbations, when x>}B8'2. When
0<u<iB 2, 0<dp _ /du<} and the fluid is stable to me-

chanical perturbations and the speed of sound relative to the
fluid does not exceed the speed of light.

(3.79)
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FIG. 5. The pressure gradients dp, /du, given by Eq. (3.77), plotted
against u for §=0, 0.1, 1, 5, 10, 25, 50, 100, and co. The two straight-line
graphs for =0 correspond to the equations of state p, =y and
P = —u/l

IV. SPACELIKE RICCI COLLINEATION VECTORS
ORTHOGONAL TO «*: IMPERFECT FLUID SPACE-
TIMES '

When considering the properties of RCVs
£=é&n’(n,u° =0,n,n° = + 1) admitted by imperfect flu-
id space-times in which either or both ¢°#0 and 7, #0 it is
convenient to decompose ¢° and 7, with respectton®. If X
and Y, are any vector and second-order tensor orthogonal
to #“ on all indices, then

Xa=(n‘Xl)na+palX‘, (4.1)
Yab = ( Ysgnsnt)nanb + naptb Ystns + nbpfz Yslnl
+ { YoupVas + (Pals — 3P Pus) Yoy  (42)

where p*®is defined by (3.8). Thus ¢° and 7, may be decom-
posed with respect to n° as

¢ =vn°+ Q9 (4.3)

Tap = V(MaBy — 3 Poy) + 2P 0y, + Dy, (4.4)
where

v=gq,n, (4.5)

Yy =m,nn, (4.6)

Q°=p", (4.7)

P =p¥m,n', (4.8)
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Dy = (PePo — 3P Pas ) Trsr- (4.9)
We have
Qu* =0, Q.n°=0, Pu°=0, P,n°=0;
D, =D,, D,u*=0, D,n*=0, D°,6=0.
(4.10)

The necessary and sufficient conditions for an imperfect
fluid space-time to admit an RCV, £?=§£n® can be ex-
pressed in terms of propagation equations for v, y, Q°, P¢,
and D,, along the integral curves of n°. The analysis is more
complex than that for an RCV parallel to #“ as presented in
Theorem 2.1. One reason for this is that #°% unlike u“ is not
in general orthogonal to ¢, or 7,,. Since 7 ,u* =0, u®is a
timelike eigenvector of 7, with zero eigenvalue. This sug-
gests that the simpler case in which ¢° = 0 and n“ is a space-
like eigenvector of 7, should first be considered. This will
be done in the next subsection which corresponds to Sec.
III C for an RCV parallel to 4°. We will then state without
derivation the more complex theorem for a fluid space-time
with ¢°5£0 and general 7, .

A. Fluid space-times with ¢”=0 and 7" an eigenvector of
Tat

Suppose that n° is a spacelike eigenvector of 7,:

Tap” = VMg, (4.11)
where ¥ is given by (4.6). Then from (4.8),

P°=0 (4.12)
and (4.4) reduces to

Tap =Y(MaMy — 4 Pap) + Doy (4.13)

An important example of (4.11) is a fluid with aniso-
tropic pressure. If ¢° = 0, the energy-momentum tensor of a
fluid with anisotropic pressure is'

T = pu'u’ + pys°s" + p.p™ (5), (4.14)
where s° is a spacelike unit vector orthogonal to
u’(s,s"= + 1, s,u*=0), p, and p, denote the fluid pres-
sure parallel and perpendicular to s°, respectively, and

Po(s) = g°° + u“u® — s°". (4.15)
When necessary the projection tensor p® defined by (3.8)
will be denoted by p®(n) to distinguish from p“*(s). Equa-
tion (4.14) may be rewritten in the standard form (2.1) with
¢° = 0and

p=ip +2p), (4.16)

Tap = (Pr — D)) (hap — $,5,). (4.17)
There are two cases of interest.

(i) n° = 1 5% If n” = + s” then using (4.17),

Tapn® =3(p) — p. )1, (4.18)

and therefore »° is a spacelike eigenvector of 7, with

y=3p —p.). (4.19)
Further, it is easily verified from (4.9) that
D, =0. (4.20)
(ii) n,s* = 0. If n* is orthogonal to s° then
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Tat” = {(py — Py Ias (4.21)

and therefore n“ is a spacelike eigenvector of 7, with eigen-
value

=1, —py)- (4.22)
A direct calculation using (4.9) gives
Dab = (P|| —pi )(sasb - %pab(n)) (4-23)

where p,, (n) is given by (3.8).

An example of a fluid with energy-momentum tensor of
the form (4.14) is a plasma in a strong magnetic field. If the
particle collision density is low, a strong magnetic field can
cause the pressure along and perpendicular to the magnetic
field to be unequal. The total energy-momentum tensor is'?

T = puu® + p;s°s® + p p™(s) + T &, (4.24)
where s° = H°/H, H° is the local magnetic field measured
by «° and T&, is the electromagnetic energy—momentum
tensor. We will take for 725, the Minkowski tensor. If the

local electric field E © vanishes the Minkowski tensor for a
pure magnetic field is®

T#E, = WH s + JAHh,, + AH*(3h,, — $,5,)
= UH %" — JAH " + JAH p™(s), (4.25)
where A is the magnetic permeability. Thus 725, also has the

form (4.14) and the total energy-momentum tensor (4.24)
can be written as

T =puu® + pys°s® + p,p™(s), (4.26)
where

T=p+AH?, (4.27)

Py =p) —YH?, (4.28)

by=p, +UH (4.29)

J

The results (4.18) and (4.23) are valid with p; and p, re-
placed by p and p, .
We now outline the derivation of the following theorem
that is established in a similar way to Theorems 2.1 and 3.1.
Theorem 4.1: If Einstein’s field equations (1.5)
are satisfied and ¢°=0 but 7,#0 and if
n“(n,n° = + L,n,u° = 0) is a spacelike eigenvector of 7, :
Tapn® = yn,, (4.30)

then the fluid space-time admits an RCV, £° = £n°, if and
only if

1) (g+3p—-20)o,n'

=}(u—p—y+2A)N, + D, N, (4.31)
(il) p5piDe
=—W—p—V+20)FL 0 + (D“F )Pus
—&D,, —25%,.D,,' —2#,.,D,,’, (4.32)
(iii) (u—p+2y+20) [, + (log§),
— (% +ni'n,] =0, (4.33)
(V) P= —i(u—p+ 2y +2A)N(& +2n,i")
—y& +D“S7,, (4.34)
(V) [(u—p+2y+2A)én°], =0, (4.33)

where N? and D,, are defined by (3.4) and (4.9) and &,
& s and &, are the expansion, shear, and rotation of the
spacelike congruence generated by 7° as measured by an ob-
server with the fluid unit four-velocity u°.

Proof: We give the main steps in the proof. Using Ein-
stein’s field equations (1.5) and (4.13) for w,,, it can be
verified that (3.15) becomes

LRy = E[3H+ 3D usuy, + 4~ B — Ppap + 4 =5+ 2P )nany + 21+ p — 1) (ottyy — uca'yn,)

+ 37’""@’%) +(u—-p+27y+ ZA)”({(IOS E)p+ (u—p—v+2M)ny +2D, 1", ].

Suppose first that £#° is an RCV. Then the right-hand

side of (4.36) vanishes and by contracting it in turn with
ab cd

uw’, u°n®, uapbc’ n°n®, napbc, pab’ and pacpbd — 4 p™p the
following seven equations are derived:
E+3p+2(u+3p—2Mni =0,
(L—p+2y+2A)[(log &) —n,#*] =0,
Y —p +2M)hLh, — (u+p)(E, — (nd"n,)
+3(u + 3p - 2A)pén'u,, — YN, + D, N'=0,

(4.37)
(4.38)

(4.39)
S_Bb+20+2(u—p+2y+28)(log£)* =0, (4.40)
(—p+2r+28)p,[#, + (log ) ,] =0, (4.41)

E—F—-P+(u—p—y+20)8 +2D“5 , =0, (4.42)
DD+ (—p—7+28)F 0y — (DS i )Pas

+ &D,, + 251Dy’ + 2R Dy, = 0. (4.43)
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(4.36)

r

The momentum conservation equation contracted with
n® will also be required. For a fluid with ¢° = 0, the momen-
tum conservation equation, which follows from Einstein’s
field equations, is”®

(# +p)ua = - hz(p,b + #bc;c)' (444)

If (4.44) is contracted with n° and (4.13) is used for 7° then
we obtain

P+P+w+p+yIni‘+3y€ —~DS, =0.
(4.45)
(i) Condition (4.31) follows directly from (4.39) with
the aid of (3.25).
(ii) Condition (4.32) is given by (4.43).
(iii) To derive condition (4.33) we first expand (4.41)
and use (4.38); this gives
(#—p+2y+2M)[#, + (log£),, — (log £)*n, ] =0.
(4.46)
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Now, (& —p + 27 + 2A) (log £)* is given in terms of f, 5,
and ¥ by (4.40). By solving (4.37), (4.42), and (4.45) for J,
}, and ¥ we find that

f= —(u—p+iy+20)%

— (u +p+y)nci4‘—D“’fcd, (4.47)
b=ip—p+ir+20%

—p+5p—y—4M)n i + DS ) (4.48)
b= —4u—p+5r+2M)¥

— 3 —p+ 27+ 2000 + DS s (4.49)

and by substituting for ﬁ, ﬁ, and 7"5 in (4.40), we obtain
(w—p+2y+2A)(log &)*

=(u—p+27+2A)(& +ni). (4.50)
Condition (4.33) follows directly from (4.46) and (4.50).

(iv) Condition (4.34) is given by (4.49).

(v) Finally, consider (4.33). Equation (4.40) may be
written as

(B—p+2y+20)* +2(u—p+2y+2A)(log £)* =0.
(4.51)

But from (3.31) and (4.50), we have

(u—p+2y+2A)(log £)* = (u —p + 2y + 2A)n%,,
(4.52)

and by replacing one of the terms
(#—p+2y+2A)(log £)* in (4.51) by (4.52) it follows
that

(# —p+2y+2A) én°

+U—p+2y+2M)(§.n"+én°,) =0, (4.53)
from which (4.35) is immediately obtained.

Hence, if £n° is an RCV then conditions (4.31)-(4.35)
are satisfied.

Conversely, suppose that (4.31)-(4.33) hold and that
Einstein’s field equations are satisfied. We show that £n° is
an RCV.

If (432) for D, (4.33) for (u—p+2y
+2A)(log £) ,, and (4.34) for ¥ are substituted into
(4.36) and n,, and n,, are expanded using (3.9), then
(4.36) becomes

LRy =E [JE+ 3B ugu, + {E—B+40 —p+ I+ 208 + 3 —p + 27 + 2M)n,d' + D5 }hay

+ (u+3p— 2A)(z'i(,,ub) — N u,) — (W —p—7+2A)Nuy, —2u, Dy N'].

With the aid of the identity (3.25) for n'u,, and (4.31),
(4.54) simplifies to

L enRap =36 [{f+ 3P +2(1 + 3p — 2A)n,i' }u,u,
+{-P+3u—p+ir+20°¢

+3(—p+2y+ 28,0 + 4D , Thy, ]
(4.55)

It remains to obtain expressions for £ and p. We first expand
(4.35) to obtain

E—D+2b+ (u—p+2y+2A)((log £)* +n°,) =0.
(4.56)

But contraction of (4.33) with »n® gives again (4.50) and
using (4.50) and also (3.31) for n°_, (4.56) becomes

A—P+20+2(u—p+2y+2A)(% +nu) =0.
: (4.57)

If (4.57), (4.34), and (4.45), which follows from Einstein’s
field equations, are solved for £ and } then (4.47) and (4.48)
are again obtained. By substituting from (4.47) and (4.48)
for /i and } into (4.55), it is readily verified that the right-
hand side of (4.55) vanishes and therefore £n“ is an RCV.
|
It is easily verified that (4.35) is the conservation law
(1.6) for the special case of an imperfect fluid with
q° = 0,m,,n® = yn, and v, = &én,,. Unlike a perfect fluid, for
which the necessary and sufficient conditions (3.10)-(3.14)
do not depend on #,, the rotation of the spacelike con-
gruence enters through (4.32) when D, #£0.
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(4.54)

}

Applications of Theorem 4.1 may be divided into two
cases, D, =0 and D,,#0. We first consider imperfect
fluids with D, = 0.

Theorem 4.2: Suppose that an imperfect fluid space-
time admitsan RCV, £ % = &n(n,n° = + l,n,u° =0), that
Einstein’s field equations hold and that

Tab =nuu, +phnb + Tabs (458)

where 7, satisfies
Taph” =VNgy Doy = (PP — } PP )7y = 0. (4.59)
(a) Then, eitherp=py — ¥ +2A or £, =0,

(4.60)
where ., is the shear of the n-congruence as measured by
an observer with 4-velocity u“.

(b) @ = 0. Then either p =y — ¥ + 2A or the integral
curves of n° are material curves in the fluid.

(c) @#0. (i) If p=p — ¥y + 2A but u + A — 3y#0,
then n’ = + 0"/ w.

(ii) If the integral curves of n° are material curves in the
fluid and 1 + 3p — 2A #0 then n* + 0w/ .

(iii) If n* = 4+ 0%/ w and if p5#£u — ¥ + 2A, then the
vortex lines are material lines in the fluid.

Proof: (a) When D, = 0, (4.32) reduces to

(u—p—v+20)5,=0

and therefore eitherp =y — ¥y +2A or %, =0.
(b) When w =0and D,, =0, (4.31) reduces to

(e —p—y+2A)N, =0, (4.62)

(4.61)
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and hence eitherp=p —y+2Aor N, =0. When N, =0
the integral curves n® are material curves.
(c) When w#0and D,, =0, (4.31) becomes

(#+3p—2M)o,n" =§(u—p—y+2A)N,. (4.63)
(i) If p=pu — ¥ + 2A, then (4.63) reduces to
(+ A —P)w,n' =0 (4.64)

and hence if z + A — 3¥70 then w,,n' =0 and therefore
n= 4+ owve.

(ii) If the integral curves of #¢ are material curves then
N =0 and therefore from (4.63), if 4 + 3p — 2A#0, then
w,n'=0and n°= + 0.

(iii) If n* = + 0/ and if p5#£u — y + 2A then from
(4.63), N°=0 and the integral curves of #* are material
curves. ]

As an application of Theorem 4.2, consider a fluid with
anisotropic pressure and energy-momentum tensor of the
form (4.14). This includes a fluid with anisotropic pressure
produced by a pure magnetic field. If n° = + 5° where s is
the preferred direction, then by (4.18) and (4.20), n%is an
eigenvector of 7,, and D,, = 0.

Theorem 4.3: Suppose that a fluid space-time with ener-
gy-momentum tensor (4.14) admits an RCV, £°= &n°,
with n® = + 5°(s,u°=0, s5,5°= +1).

(i) Then

eitherpy = + 2A or %, =0, (4.65)

where ., is the shear of the spacelike congruence genera-
ted by n° (equivalently s°) as measured by an observer with
four-velocity u°.

(ii) If the anisotropic pressure is produced by a pure
magnetic field and

u+p+2p, +AH? — 2450, (4.66)

then the magnetic field lines must coincide with the vortex
lines if @ #0:

n°= + H°/H = + 0%/ . (4.67)

Proof: (1) Theresult (4.65) follows directly from (4.60)
using (4.16) for p and (4.19) for y.

(ii) Ellis® has shown that if the local electric field
E ¢ =0, then the magnetic field lines are material lines in the
fluid. This follows from the Maxwell equation governing the
propagation of H ¢ along u: if the magnetic permeability 4 is
constant, then

heH =u" ,H®— 6H", (4.68)
and contraction of (4.68) with H “ gives
H=Hn, i — 6H, (4.69)

where n° = H°/H. It is readily verified using (4.68) and
(4.69) that (3.2) is satisfied. The total energy-momentum

tensor is {4.26), which is of the form (4.14), and the result
(4.67) follows from Theorem 4.2(c) (ii) if

7i + 3p — 2A #£0, (4.70)
where, by (4.16), 5 = {(p; + 2p,). Using (4.27)-(4.29) it
can be checked that (4.70) is condition (4.66). |

The result (4.65) is independent of p, . When H ¢ is par-
allel to w” the charge density as measured by #° €, must be
nonzero. This follows from the Maxwell equation®

2w, H®=e.

Consider next imperfect fluids with D, #0.

Theorem 4.4: Suppose that an imperfect fluid space-
time admitsan RCV, £ % = £n’(n,n° = + l,n, u® = 0), that
Einstein’s field equations are satisfied and that T, is given
by (4.58) where 7,,n° = yn, and D,, #0.

(i) fo=0orif n* = + w*/w, then N°is a spacelike
eigenvector of D, and =, with eigenvalues

— 3 —p—y+2A)and — {(u — p + 2A), respectively.

(ii) If @50 and u + 3p — 2A #0 and if the integral
curves of #° are material curves in the fluid then
n°= + o’/w.

Proof: (i) If o =0 or if n° = + w*/w, then (4.31) re-
duces to

(4.71)

DyN®= —}(p—p—7+2A)N,. (4.72)
Also, it follows by contracting (4.13) with N ° that
TN?= —1(u —p+2A)N,, (4.73)

which establishes the results.
(ii) If the integral curves of n° are material curves in the
fluid then N ¢ =0 and (4.31) reduces to

(4 +3p — 20w, n' = 0. (4.74)

Hence, if 4 + 3p — 2A#0 then w,n’=0 and therefore
n°= 4+ ow. [ |

The results of Theorem 4.4 apply to a fluid with aniso-
tropic pressure in which #° is orthogonal to the preferred
direction s°.

B. Fluid space-times with ¢*#0 and general =,

Finally, we state without derivation a set of necessary
and sufficient conditions for a fluid space-time with ¢°#0
and general 7, #0 to admit an RCV, £ “ = £n°, orthogonal
to u”. These conditions are expressed in terms of the propa-
gation equations for v, ¥, Q¢ P*, and D * along the integral
curves of n° and the conservation law (1.6).

Theorem 4.5: If Einstein’s field equations (1.5) are sat-
isfied, then a fluid space-time with energy-momentum ten-
sor (2.1) admitsan RCV, £° = én®(n,n° = + Ln,u" =0),
if and only if

J
() P20, = — (1 +3p — 2N @,y n® + (i —p — ¥ + 2A)N, + Do, N® + ((log ) — n, )P,
—wpb(f, + (log§) ) — (nil® +4€)Q, — Q°F o — Q°R s (4.75)
(i) pepiBy = — (—p— 1+ 20) F oy + (DS oy + 20,00 + P(h, + (108 £) ))Pas
—4Q, 04,1 — 2P, (A, + (log §) ) — Dy — 2.7 (o Dy,  — 2R (s, (4.76)
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i) p2B, = —4(u —p+ 2y + 20) [A, + (log ), — (& + nyi*)n, — (1,8 — (log £))u, ]
+ [Pb(log &), + P, + Hlog(£v)) + v8 |n, — 2vw,,n® — (4F + (log £)*)P, — P25, — P°A™,

(V) ¥=4(u—p+ 2y +2A)(log §)  — n, &) — An,i* + (log §)*) + N, P*,

(4.77)
(4.78)

(v) ;= —p—p+SY+2M)& —3(u—-p+2y+ 2M)n, 0" + DS,

+ 40,01’ — M0 + (log £v)) — 4P°, + 3P (A, — (log §),.),

(vi) [§(P° 4+ vu’ + }(u — p + 2y 4+ 2A)n%) ], =0,

where N is defined by (3.4), v, 7, Q% P° and D are
defined in terms of ¢° and #*® by (4.5) to (4.9) and &, .,
and & ,, are the expansion, shear, and rotation of the space-
like congruence generated by n° as measured by an observer
with the fluid unit four-velocity u°. u

Theorem ‘4.5 can be established in a similar way to
Theorem 4.1. It is readily verified that (4.80) is the conser-
vation law (1.6).

V. CONCLUDING REMARKS

All of the properties derived in this paper are dynamic
results because they were obtained with the aid of Einstein’s
field equations. They depend on the nature of the fluid
through the energy-momentum tensor and the equation of
state. We have seen that many of the properties of timelike
RCVs parallel to u® have direct analogues for spacelike
RCVs orthogonal to u°. The decomposition of 7, and ¢°
with respect to n° proved useful in obtaining necessary and
sufficient conditions for a space-time to admit a spacelike
RCYV parallel to n°. These conditions depend on the rotation
tensor # ,,, of the spacelike congruence generated by #° only
when the components D,, or P of 7, or Q° or g° are non-
zero. The vorticity vector of the fluid, »°, plays an essential
role in the properties of rotational fluid space-times that ad-
mitan RCV orthogonal to #°. This is not unexpected because
° defines locally a preferred direction in a rotational fluid.
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The Dirac quantization of a finite-dimensional relativistic system with a quadratic super-
Hamiltonian and linear supermomenta is investigated. In a previous work, the operator
constraints were consistently factor-ordered in such a way that the resulting quantum theory
was invariant under all relevant transformations of the classical theory. The method was based
on a special choice of coordinates and gauge. Here, coordinate-independent methods are
worked out and a quite general gauge is used. A new mathematical concept, the so-called
“transversal affine connection,” is introduced. This connection is not a /inear connection and is
associated with a degenerate metric. The corresponding curvature tensor is defined and its
components are calculated. The formalism is used to reconstruct the operator constraints,
clarify their geometric meaning, and calculate their commutators.

I. INTRODUCTION

In Ref. 1, which will be abbreviated by 1 below, we stud-
ied the Dirac constraint quantization of a finite-dimensional
relativistic gauge system with a quadratic super-Hamilto-
nian and linear supermomenta. We required that certain
classical symmetries of the system are preserved in the quan-
tum theory. This requirement has implied a unique factor
ordering of the constraint operators, which automatically
satisfies the condition that the commutators do not produce
more constraints.

The constraint operators contain terms that strongly re-
semble a curvature scalar or a covariant derivative in a Rie-
mannian space. The nature of the system does not, however,
admit an intrinsic nondegenerate metric that would define a
linear connection. In I, we avoided discussing the geometri-
cal structure that underlies the constraints and relied instead
on suitable gauges and special coordinates. Our present aim
is to reveal the geometry of the constraints by using coordi-
nate-independent methods. We believe that the resulting for-
malism shall be useful in the quantum theory of general
gauge systems.

The program of the paper is as follows. In Sec. II, we
briefly introduce our model system. In Sec. III, we describe
the geometrical structure imposed on the configuration
space-time by the constraints. In Sec. IV, we introduce the
concept of a transversal distribution and of transversal ten-
sor fields. In Sec. V, we present some properties of Lie de-
rivatives of these fields that are important later. The key-
stone of our geometrical theory, the so-called transversal
affine connection, is defined and discussed in Sec. VI. Itis a
connection in a subbundle of the bundle of linear frames
determined by a degenerate metric. As far as we know, such
an object was not previously identified in literature. In Sec.
VII, we introduce the corresponding curvature tensor, Ricci
tensor, and curvature scalar, evaluate their components, and
write down the Bianchi identities. Finally, in Sec. VIII, we
demonstrate the usefulness of the formalism by directly cal-
culating the commutation relations of the constraint opera-
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tors. (In I, we did the calculation in special coordinates and
gauge and then transformed to the general case.)

Il. DESCRIPTION OF THE MODEL

We consider a finite-dimensional relativistic parame-
trized system with additional gauge degrees of freedom. Its
phase space is a cotangent bundle over a manifold .#—the
configuration space-time—of dimension N + 1. We denote
the coordinates in the configuration space by Q4
A =0,...,N, and the components of the momenta by P,,. This
structure is invariant under the contact transformation:

04 =04 (@), PA-=§QQ; P,. M
The constraints have the form

H=iG**(Q)P,Ps + U (Q)P, + V(Q), (2)

H, =95(Q)P,, (3)

where a = 1,...,v. With respect to the contact transforma-
tions (1), G*3(Q) is a contravariant symmetric tensor field
called “metric,” U4(Q) and ®%(Q) are vector fields, and
V(Q) is a scalar field, on .#. We assume that the gauge
constraints H, can be chosen in such a way that the v fields
®4(Q) determine v independent vectors at each point Q of
M

The vectors &2 (Q) at a point Q span a v-dimensional
vector space T called longitudinal vector space. The covec-
tors w, at Q that annihilate 7, are called transversal covec-
tors. They span an (# + 1)-dimensional space T ¥ called the
transversal covector space at Q, with n = N — v. The metric
G*2(Q) induces a nondegenerate metric on 7¥ with the
signature ( —, +,..., + ).

The fields G 42(Q), UA(Q), &4 (Q), and ¥(Q) must be
such that the Poisson algebra of the constraints closes:

{H,.Hpg} =" xH,, (4)
{HH,}=C,H+ (C5P, + B%)H,. (5)
The coefficients on the right-hand side of Eqs. (4) and (5)

© 1990 American Institute of Physics 1723



(they are tensor fields on .#) are called structure functions.
The most general transformation that preserves the con-
straint hypersurface € reads

H'=eOH 4+ (AP, + A“)H,, (6)
H, = A% H,, N

where 2(Q), A%(Q), and A% (Q) are arbitrary scalars and
A®4(Q) arbitrary vectors on .# such that the transforma-
tion (7) is invertible:

Det(A,%(@))#0, YQed. (8)

In I, we presented the Dirac constraint quantization of
the system that is covariant under the transformations (6)
and (7) of the constraints as well as under the point transfor-
mations (1) in the big phase space.

. GEOMETRY OF CONFIGURATION SPACE-TIME

The constraints define a geometrical structure on the
configuration space-time .# . Let us briefly describe this
structure.

In I we showed that the vector fields 3, = ®2d, are
surface forming and we called the corresponding maximal
surfaces “orbits.” The tangent space to the orbit at a point Q
of # isidentical with 7| . This is the geometrical structure in
# determined by the linear constraints (3). The transfor-
mation (7) is equivalent to an invertible linear transforma-
tion of the vectors d,, , so the orbits are invariant with respect
to (7). The transversal covector space, T* as a space of all
covectors which annihilate ®, is also invariant under (7).

To see what structure is determined by the quadratic
constraint (2), we substitute (2) and (3) for the constraints
into Egs. (6) and (7), and thereby obtain the following
transformation relations for the fields:

GIAB_: enGAB+ AaA(DaB + Aan),;, (9)
Ut =eU" + A°D2, (10)
V' =eV. (11)

Hence, the fields G2, U4, and ¥ are not invariant by them-
selves; it is only the class {G45,U4,V} of the fields, whose
elements are obtained by all transformations (9)-(11), that
forms the geometric structure. The above transformations
consist of the addition of arbitrary longitudinal terms as well
as of the rescaling of all the fields by an arbitrary positive
common factor. Observe that the signature of the metric
G “® on the transversal covector space is invariant with re-
spect to the transformation (9), and it is thus a property of
the whole class, whereas the signature of G 4% in the remain-
ing directions is arbitrary.

In I, we saw that the Jacobi identity for the algebra (4)
and (5) implies the following equation for C,,:

{C..Hg} —{Cs,H,} =7 4C,. (12)
The structure functions C, (called constraint cocycle) can
thus be considered as nonholonomic components (in the
frame &% ) of some form on each given orbit, and that form is
closed. One can thus always transform C, away, at least
locally, by a suitable rescaling (6). The case in which all C,
vanish is particularly interesting. We will call it “the case of
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equidistant orbits,” and use its (local) existence for proofs of
some theorems.

Relation (4) implies that the fields G482, U4, and ¥ sat-
isfy Egs. (2.15)-(2.17) of I:

Z,G*® =C,G*® 4 CHDE + CPP4, (13)
L, Ut=C,U*+ B Ad4, (14)
LV=C.V: (15)

here ., denotes the Lie derivative with respect to the vec-
tor field 8, = ®44,, a = 1,...,v. The geometrical meaning
of Egs. (13)~(15) can be described as follows. The vector
field 4, defines an infinitesimal diffeomorphism, ¢, along
the orbits in .#. Let Q, be an arbitrary point and Q, be its
image by @,,; @, and Q, are neighboring points on the same
orbit. Let some particular fields G *%, U4, and ¥ be given on
# and let their values at @, and Q, be G2, U{,¥, and
G#2,U4,V,, respectively. Then, the image of G {5, U4, ¥, by
@y lies in the class {G5%,U4,V,}. We can say: the class
field {G*2(Q),U*(Q),V(Q)} defined on .# by the con-
straints is “Lie-constant” along each orbit.

Suppose for a moment that the orbit space, ». = .#/or-
bit, is a quotient manifold so that the projection 7 that sends
each point of .# to the orbit through that point is a submer-
sion. The derivative of 7 at any given point Q of .# defines a
tensor algebra homeomorphism, 7, (Q), of the algebra of
purely contravariant tensors at Q to the corresponding alge-
bra at 7(Q). The homeomorphism 7, (Q) annihilates the
ideal generated by the longitudinal vectors ®7 (Q), and sat-
isfies the relation

Tulpa ()Pt =7, ()1,
for any contravariant tensor ¢ at Q. From Eqgs. (13)}-(15), it
follows that

(77'* (@ )GAB(Ql )y'ﬂ'* ( )UA(Q1 )977'* (@V(Qy))
= (/177'* (Qz)GAB(Qz)/lﬂ'* (Qz)UA(Qz ),

XZ'F* (Q2 ) V(QZ )))

where A is some number (4 — 1 is infinitesimal in this case).
Thus, applying the map =, to the fields G*%, U4, and ¥ at
each point Q of a given orbit, we obtain a whole subset of the
conformal class, {g*%,u%v}, of tensors at 7(Q). Each two
elements of this class are related by the transformation
{g“tu v} = {e“g" e“u’ev},

where o is some real number. All metrics g*° in the same
class will be nondegenerate and will have the same signature
that G *# has on the space of transverse covectors. Under
reasonable assumptions, the conformal classes defined in
this way on »z will be smooth in the sense that there will be a
smooth representative field {g*%,u%v} on ».. The geometry
on ,~ is invariant under the transformations (1), (6), and

N.

IV. TRANSVERSAL FIELDS

In Sec. III we have shown that the constraints induce
two geometrical structures on the configuration space: a foli-
ation by the orbits and a transversal conformal class of fields,
{G“2,U*,V}. In1, we have chosen some particular represen-
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tative of the class and constructed a corresponding differen-
tial operator—the operator constraint. Every such operator
constraint must be invariant with respect to (1), and opera-
tor constraints obtained from different representatives must
define the same quantum theory. In I, we introduced the so-
called transversal distribution 7',

Tl + I]| = TQ(-/”)
There are clearly many such distributions, some of them
integrable and some of them not. We will only require the
distribution to be differentiable. In 1, T, was associated with
the metric G*# defined by the fixed representative, and it
was shown that the resulting quantum theory does not de-
pend on its choice. Here, we select the transversal distribu-
tion 7, independently of G %, The final result still does not
depend on T, because we can always find a metric that is
associated with 7, in the way assumed in 1.

We can consider the spaces T, and T ¥ as being dual to
each other. Indeed, let x, be an arbitrary covector from T¥;
then, x, defines a form on 7, by

(x ") = x5,
where y* is an arbitrary vector from T, . Moreover, there is
no nonzero vector in 7, that is annihilated by all covectors
from T'¥, because such a vector had to lie in T1;.

We introduce the projection tensor g4, associated with
the distribution 7', that satisfies the equations

gAByB=yA’ vyAETu (16)

g P? =0, V(D”eT” y (17)
and

glpx, =x5, Vx,eTk (18)

The requirement that the distribution 7', be differentia-
ble can be succinctly expressed as the requirement that the
projector g*5 be a differentiable tensor field on .#. Observe
that not all the derivatives of g, are independent, because

8'c8°39:8% =0. (19)

Any metric G“® and any vector potential U from the
given class define a transversal metric, g*2, and a transversal
vector potential, #4, by

g% =G g g%,
ut=U5g",. (20)

The quantities g*# and u* are invariant with respect to add-
ing longitudinal terms to G ## and U“, but not with respect
to a rescaling. Observe that g*# and u* lie in the class
{G*5,U*,V} because they differ from G“% and U“ merely
by longitudinal terms. In this way, a particular choice of
representatives of the class {G4%,U4,V} is associated with a
fixed distribution. However, any representative of the form
B u',V}, i.e., one that is associated with some distribu-
tion, is special in two respects: (i) the metric g*® is maximal-
ly degenerate (its zero space is v-dimensional ), and (ii) both
g'? and u” lie in the same proper tensor subalgebra
J(T,,T¥), namely that generated by 7, and T*.
Since the metrics G *? and g*® related by Eq. (20) differ
only by longitudinal terms, they induce the same metric on
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T'¥; this metric is nondegenerate and hence

g% #0
for any nonzero x €T ¥. Further, Eq. (20) implies

gABxB = GCDgAchDxB

= gAc(GCDgBDxB )eT,.

Thus, g*# defines a linear isomorphism from 7% to T. Let
us denote by g, a tensor determined by the following prop-
erties of the associated map of vectors into covectors: on T,
the map coincides with the inverse of the linear isomorphism
g% on T,, the map is zero. The covariant transversal metric
8.5 Satisfies

gABgB €= 84 <
We also define

uy =g pu" =g,5U" '

After these preliminaries, we are ready to introduce an
important concept of transversal tensor.

Definition 1: A tensor t* 8., is called a “transversal
tensor,” if it satisfies the relation

tAmBC-"D = thQR-nsgAP' "gBQch"'gSD-
We see that g5, g .5, u',u,, and g, © are transversal tensors.
We shall denote the transversal tensors by lower case letters.
Transversal tensors can be considered as elements of the ten-
sor algebra 7 (T,,T¥). We shall now construct the corre-
sponding tensor algebra isomorphism as follows.

Let x? be any basis of T, and let x4 be the dual basis in
T¥ (called a “transversal frame™):

xixh =85, xixp =g5.
Then, any transversal tensor t determines a tensor in
T (T,,T¥) defined by

a-b __4A B a...vb+C... oD
t g =1t C...pXq ' XpX; " Xg.

(21)

The basis x? can be chosen orthonormal (“transversal or-
thonormal frame”):

8anXixt =14, VYab=0,..,n,
where
NTo=+1, Mu="""=70,,=—1

Any tensor T can be projected into a unique transversal
tensor t:

tA”.Bc...D =gf:“ 'gzgé' "ggTP“-Rs...T-
We will abbreviate this operation by the symbol P:
4B — PT4 8
C...D — C...Du

The concepts introduced in this section are vital.

V. LIE DERIVATIVE OF TRANSVERSAL FIELDS

In the formalism that we are going to develop, the Lie
derivative of transversal fields with respect to the longitudi-
nal vector fields will play an important role. To begin with,
we prove the following.

Lemma I: Let t ... 5 be a transversal tensor field of type
(0,9). Then, (.Z,1) ,...5 I8 again a transversal tensor field.

Proof: The requirement that a tensor field be transversal

P. Hajicek and K. V. Kuchar 1725



can be expressed as follows:
ty.p®h=""=1,.,95=0, VB
The Lie derivatives of these equations lead to
(L oty p)Ph= —t,. 3L, P4
= — gty 3P4 =0.

Q. E.D.

The Lie derivative of transversal tensor fields that have

some contravariant indices will have a nonzero longitudinal

part. We need to know an explicit form of this part for some

tensor fields. Let us choose a basis of v longitudinal vector
fields @4 and denote the dual basis by ®4:

D] =8, PiP; =55 —g%,
g’ =0.

It is useful to introduce an abbreviation:
C1a” = PGL 8" (22)

For a fixed longitudinal basis ®4, c ., ? is a transversal covec-
tor. The transformation (7) of the longitudinal basis,

D4 = A PDE, (23)
induces a transformation of ¢, %:
C,Aaﬁ__‘A_lyB(AaacAGY—gBAaBAaa)' (24)

The quantities c,,,” help us to define a kind of covariant
derivative of longitudinal covectors in transversal direc-
tions. This derivative will appear in some important formu-
las. Let £, transform as

Ela = AaBEﬂ
under the change (23) of the basis. Then, Eq. (24) implies
immediately that ¥ ,, defined by

Vi =84 Ban E,+ cAaﬁEB
transforms as

Ve = AaB‘IlAB'
As a result, ¥, can be considered as a kind of a covariant
derivative of Z,,.

The Lie derivatives of the transversal metrics and vector

potentials are given by the following.
Lemma 2: It holds that

L ut = c ut — ¢, D4, (25)

L 8% =, 8" + " Pd} + P, Pp, (26)

L8 = Cuaﬁq’ga 27

Lau, =0, (28)

&L 184p = — CaBup> (29)
where

. =C,, cP=u'c,’ .P=g"%;,° (30)

Proof: Choose a transversal frame field x? and denote
the dual frame by x%. The Lie derivative of x# can be decom-
posed into its transversal and longitudinal parts:

L xt=1,.°%3 + 1,75 (31)
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We have, on the one hand,
Lo (x3x4) =0,
and on the other hand,
Lo (xAxE) = x4 L x5 + 1.0

According to Lemma 1, .# ,x% must be transversal; there-
fore

Loxs = —1,,5x4. (32)
Let us calculate the Lie derivative of g5:
L8 =L o (x5x5)
= (10 "X} + 1" @5 X + x5 ( — to,"x5
=1,,°P®5x5.
A comparison with (22) yields
la® = €4a”x7. (33)

For g*2, the above relation gives
Z.8'°
=L, (n"x}xE)
= (Lo X2 + 1" ®5) x5
+ %5 (£ X + 1" ®F)
= 0%, (xix] + x4x2) + A, P®f + 2, °@3.
As g*® differs from G“® only by longitudinal terms, the

transversal parts of their Lie derivatives coincide. This
proves the relation (26) and implies

1.2 (x0xy + xpx5) = c, 8%
To find the Lie derivative of gz, we calculate

L8 =L ,(8"Csc) :

=g'°Y ,8pc + (c.8 + C'Aaﬂq)g + ccaﬂq)f;)gac-
Since this expression can contain only longitudinal terms
and because .Z gy is purely transversal, we obtain Eq.

(29). The proof of the relations (25) and (28) is analo-
gous. Q.E.D.

VI. TRANSVERSAL COVARIANT DERIVATIVE

We need some sort of covariant derivative to construct
covariant and conformally covariant differential operators.
In particular, for the second task we need some sort of scalar
curvature. However, the metric is in general degenerate on
the longitudinal space, and hence it determines a covariant
derivative of transversal fields only in the transversal direc-
tions. It will turn out that we need to differentiate only trans-
versal tensor fields; covariant derivatives of more general
tensor fields thus need not be introduced. The derivative of
the transverse fields in longitudinal directions will be speci-
fied by convenience.

Definition 2: For any vector field X on .#, the transver-
sal covariant derivative Vy is a map with the following prop-
erties:

(1) V4 maps transversal tensor fields into transversal
tensor fields of the same type.

(2) Vy islinear in X, linear in its argument, and it satis-
fies the Leibniz rule in its argument.
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(3) For any two transversal vector fields u and v,

(a) V.84 =0,

(b)V,v—V,u=Pluyv],
where [u,v] denotes the Lie bracket of the vector fields u and
V.

(4) For any longitudinal vector field ¥ and any trans-
versal tensor field t of type (p,q),

Vot =PLyt — (0 — Qlcyt,
where
¢y =C, V%
and ¥* is defined by ¥ = Y2,
Let us discuss this definition. The covariant derivative

can be described by the Ricci rotation coefficients, 32, ,, with
respect to a given transversal frame x7;

X4, = x5Vyxt, VX (34)

If we know 7, ,, we can calculate the covariant derivative of
any transversal tensor field t from the standard formula

Vet B p
=XExA - xBxt x5 (gt ...,

Vot gt = Vet g — )

(35)
here,

1 .=

[Equation (35) is equivalent to the requirements 1, 2, and

3.] The requirements 3a and 4 together with Eq. (29) imply
that

vngB =0, VX-

The covariant derivative of a transversal orthonormal frame
is thus a rotation, i.e., the corresponding 7, %, satisfies

Vooa = 0" Vebar

A--B a ...yl C. .. D
DXyt XpX T Xy,

where

Yaba = — Voaa- (36)
If we introduce the notation

Yabe = YabaXe
and

Ogpe = [XarXp | Xcus (37
then the requirement 3b implies that

@ape = Veba — Veab (38)
and

Voae = 3(Dcap + Dpea — Dapc)- (39)

We see that the requirements determine 7*,, uniquely.

We observe that the transversal connection has, in gen-
eral, a nonzero torsion. The torsion tensor, T€,, is well
defined for a linear connection Vy. The standard definition
(Ref. 2, p. 133),

TC s XY = [X,Y]C — (V5 Y)€ + (V4 X)C,

is in our case meaningful only for transversal vectors X and
Y; consequently, only the components T €, with transver-
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sal covariant indices make sense. According to requirement
3b,

TCABxAyB—_‘ [st]D(‘SCD —gCD)- (40)

We see that 7€, ; vanishes only if the distribution 7, is inte-
grable (holonomic).

So far, we have given the covariant derivative in terms of
the Ricci rotation coefficients. It is useful to express it also by
means of the transversal metric and the constraint cocycle.
This is given by the following theorem.

Theorem 1: Let t be any transversal tensor field and let X
be an arbitrary vector field. Then

A-B
th C--D

=PaxtA“-Bc...D + tE“.Bc...DrAEFXF'*' ct

— 4P pT X T — o, (41)
where
FAEF =P{AEF} +gANgMEgNF,M _icEgAF (42)
and
{"er} = 18"°(8epr + 8rpE — 8ErD)- (43)

Proof: Let us substitute

into Eq. (35). By differentiating, we obtain Eq. (41) with

TMec=g" Bx:an,C + 7*5c
= — gADxfexgc + ?’ABCr (44)

and

?’Aac = x':xlz’s?abc-
Let us set

FAHC ='T ABC + “FABC’
where

lI-‘Alvc =gDCFABD‘ (45)
We have

lI'\ABC = erCB'

Indeed, substituting for ‘T from Egs. (44) and (45), we
obtain

‘Tpc — 'Tcp = — 8*c8 cXpxar + 8 cV'pr
+8"8 sxcXer — &5V cr
=g expxc([%,,%,]°
— X2 Vaexy + X3 Varxg)
= g'px5xeS %, =0,

because S £, ; is longitudinal in the upper index. The require-
ment 3a implies

gE 4V:8sc =0,
which means that

Pgrca =8ec'TFan + 82'TEc4.
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As 'T'E, is symmetric and transversal, we get

erBC =P {ABC}y
where the Christoffel symbol is calculated from the metric
8.5 and g*2. For the longitudinal component we have

IT5e = q>‘éq)aDgEBxgx‘i‘,D + P75
= DgFpxoxE, — BEX, L x5 — 48 scc
= — PIg g L s — ig"scc
= — g8 (PLDY) —g'5cc
=gEBgAFgFC,E _%gABCC’
because
gc + QL = 5.
Adding both components of ', we obtain Eq. (42). Q.E.D.

VIl. CURVATURE TENSOR

The curvature tensor, R 4., of a linear connection Vy
is defined by
vaYuA _VYVXquRAvauB+ le’YluA. (46)
We can adopt this formula to our case: X and Y are arbitrary
vector fields, u is a transversal vector field, and

R AB Xy = R ABCDX CYD’
where R4, is a tensor of type (1,3), transversal in the
indices A and B. This means that the full curvature tensor
can be defined for our kind of connection by Eq. (46). No-
tice that all covariant derivatives act on transversal tensor
fields even if X and Y are not transversal; of course, the
expressions like

Vi Vyut
cannot then be rearranged into
(Vx YB)V u' + Y BV, V,u'.

When expressing the covariant derivatives in Eq. (46) in
terms of ¥, ,, we find

R abXY = XEYF(aETabF - ar'i’abE
+ VeV o — Var?ee)- (47)

Our next task is to express the components of the curva-
ture tensor by means of the known fields: the metric and the
structure functions.

Theorem 2: For any two longitudinal vectors ® and ¥,

(48)

Proof: For any transversal covector u, the requirement §
yields

VoVyu="Vy(Lyu+ jcgu)
=ZLoLyu+ e Lyu+}(dpcy)u
+ ey Lou+ ey cpu

a —_—
Rb‘b\l’_‘

Hence,
VoV,u—V,V,u
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If we use Eq. (12), requirement 5, and the properties of the
Lie derivative, we get

VQ,v\yu —_ V\!, V¢u - qu,,.,l, ]ll.

Q.E.D.

The fact that the transversal connection is flat along the or-
bits enables us, among other things, to choose an orbit-paral-
lel transversal frame.

Theorem 3: The following formula holds:

Rabca = i(abca + Cbaﬁcﬂ )gac
_%(aaca + caaﬁcﬂ )gbc, (49)
where
Ripee = 8oaR *pppxE®L.

Proof: The right-hand side of Eq. (49) is a tensor—in-
deed, in the expression in the brackets, we have covariant
derivatives of a longitudinal field in transversal directions.
Let us choose an orbit-parallel transversal orthonormal
frame x? to calculate R, . Then,

YVal = (fobb‘ =0.
By using Eqgs. (50) and (47), we obtain

R abca = [q)a X ] EyabE - fbc,a .
The Lie bracket can be written in the form
[®.X,] = L ox, = V.X, + 16X, + €Dy,

(50)

or
L Xy =1CaX, + €0 ®p.
Equation (50) then yields
R e =367 — Vb (52)

By Eq. (39), ¥4 can be expressed in terms of w,,°,. We
obtain

00 g = L o ([X,,X,]7X5)
= [D,,[%,%, 11755 + [X40%5 11 o x5
= [%,,-L X, 1°X5 — [X5,-L oX, ]7%5
+ [X00%, ]4L %%

By comparing Eq. (51) with Egs. (31) and (32), we con-
clude that

Loxt = — e, x°

(31)

(53)

The Lie derivatives are given by the expressions (51) and
(53); from there,

wab c,a = %cawabc + %(ca,a + caaﬂcﬂ )6bc

—3(Cup + CouPcg)b,"

The formula (39) then gives Eq. (49). Q.E.D.

So far, we have calculated the mixed components of the
curvature tensors by means of y°,,, that is, by means of a
transversal frame. The purely transversal components can
be expressed in terms of the metric g,, and the projection
tensor g#;. Our next task is to derive these formulas.

Theorem 4: The transversal components of the curva-
ture tensor can be expressed in terms of the transversal met-
ric and projector as
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PR"pcp = P [48"7(8sc.or + &or.8c — 8ap.CT — BCTmn)

+ 8752 (878" c {10} — 2°8"p {r5c} — 88" &’ {rmz}
+ g*¥8% 8% {rmn} + 8" &5 {1mc} — 88" c€%s {rmn})

+ {Rsc} {RAD} - {RBC} {RAD} —3(epc —Ccp )gAB]'

Proof: We calculate the curvature tensor directly from
its definition (41). Let u* be any transversal vector field, and
let X and Y be any vector fields. Then

Vi Vyu' — VyVyu' = [X,Y)PV, u' + [gASgsR,EuR,F
_gASgSR,FuR,E +gAs(FsRF.E
- FSRE,F)uR + (T FSRF
— DA TS JuR ]XEYF.
Since u” is transversal, Eq. (19) yields

gAsgsR,E“R =0.

By differentiating this equation with respect to @ %, we get

gASgsR,EuR,F = - gAS,ngR,EuR - gASgSR,EFuR'
In this way, we arrive at the formula

Rpcp =885 (T — MRspr + 8% 1:8"sr
- gRT,FgTS,E) + FAREFRBF - FARFFRBE‘
(55)
If we substitute for I" from the expression (42) and then

project, we obtain

PR pcp

=P[dc & {rmn }"58"p + gAMgNBgMD,N
—icp8's) + gAT,CgTB,D + Ty, — (CD) ],
(56)
where the symbol (CD) denotes the preceding terms with
the indices C and D interchanged. The right-hand side of Eq.
(56) can be considerably simplified. To achieve this aim, we

need some identities. First, the derivatives of the metric can
be related to the Christoffel symbols by the familiar formula

1

(54)
r
8as.c = {unc} + {aac}- (57)
Second, by differentiating Eq. (21), we obtain
gAEgEC,B =gAEgCE,B _gAEgCFgEF,B' (58)

Third, Eq. (21) yields

P(g*rc8"5p) = P(8*8sr.c8 np + 8518 8 5p)-

The last term vanishes by virtue of Eq. (19) because both
indices T'and B at g7, ;, are hit by a projector. This leads to
the final identity,

P(g'rc85p) =P[2%8 50 ({src} + {mc})] .(59)

By performing the derivative in Eq. (56) and using the
identities (57), (58), and (59), we find

PR“5cp =P[gAT{TBD},C +8 sk (8*%8%c {ran}
—g'"g% & {rms} + 88" p&"s {rmc})

—{Fan} {r"c} —dencg’s — (CD)].

The formula (54) then follows immediately. Q.E.D.
From the curvature tensor, we can derive the Ricci
tensor

PRAB = gDBR CACB’
and the curvature scalar
R= g‘ "R CACB'

From Eq. (54),

PR,y =P [%gST(gBT,As + 841,85 — 8anst — 8sr.ap) + 8 sk (gRS{TAB} — &% {TAS} - &% {TRA}

+ 8% {5} — & {r"s} + 258" {+"u})

+ {RAS} {RSB} - {RAB} {RSS} —4(cps —Csa )%, ]’
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and

R =gSTg‘B (gBT,As ;gAB,ST)
+ 28752 @ {5} - {+*h

+ {rsr} {RsT} — {*7r 3 &5
(61)

The Bianchi identity for the curvature tensor of our con-
nection cannot be written in the usual form with the torsion
tensor (see, e.g., Ref. 2, p. 135), but we have the following.

Theorem 5: For any three vectors X, Y, and Z, the fol-
lowing identity holds:

o{VzR"sxy} =0{R As[x,vlz}, (62)
where o denotes the cyclic sum with respect to X, Y, and Z.

Proof: Apply V. to Eq. (46) and take the cyclic sum
with respect to X, Y, and Z:
o{(VxVy — Vy V)V u'}

= 0{(VzR"pxy )u® + R4y Vo u® + YV, Vix v '}
By using Eq. (46) on the left-hand side, we find

o{(VzR pxy)u® + (VzVixy; — Vixy ¥z )u'} =0.
Another use of Eq. (46) leads to

o{(VzR "5y + R*zxx 8" + Viz xy '} = 0.
However,

o{Vizxy)u'} =0

for any u* because of the Jacobi identity. This yields Eq.

(62). QE.D.

We write the Bianchi identity for a particular choice of
-vectors, namely,

X=x, Y=x,;, Z=%,

where x, is a transversal orthonormal frame paraliel along
the orbits:

VoR%g0a= —V. R34, + R*p (000 — (cd)

+R510d)ar (63)

where

[ac] = [®,.x.], [ed]=[x.%4].
Equations (31), (33), and the requirement 5 imply

[ac] = L.x. =jcax, + ¢, s,

led]l =%+ = (Ve — V)X + ",

where the points denote longitudinal terms. By substituting
these relations into Eq. (63) and using Eq. (48), we get

vaR ABcd = - ch ABda + %caR ABcd - ccaﬁR ABdﬂ
+ yech ABea - (Cd)

If we multiply this relation by x4 x7, take into account that
the frame is parallel along the orbits, and use Eq. (34), we
find that

aaR abcd = caR abcd - (ch abda - (Cd))9 (64)
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where
VcR abda = acR abda + ‘}ﬂecR ebda - YebcR aeda

- Vch abea + ccaﬂR abdﬁ'
Equation (64) is the desired relation. Observe that both
sides of it transform as tensors if we rotate the frame by an
amount that is constant along the orbits, or if we transform
@, by the transformation (7).

VIil. CONSTRAINT OPERATORS

If we assume that the orbit space is a quotient manifold,
we have the conformal geometry with a nondegenerate met-
ric, a vector field, and a scalar field. Such a geometry deter-
mines uniguely some differential operators in the following
sense.

Lemma I: There is a unique pair of differential opera-
tors D,,D, on the space of scalar functions on . with the
properties:

(A) D, (D,) is formed solely from the field g° (g°%,u“)
and its derivatives, each term having dimension — 2 ( — 1),
the leading part being

g°%3,8, (u%d,).

(B) D, (D,¢@) is a scalar for any scalar field ¢.

(C) There is a number k for any dimensionn 4+ 1> 1 of
the space 2 such that

D1 I¢l=e(k+l)nD1¢’ th¢l=e(k+l)noz¢’
where

q) [ ekﬂ¢’
and D,’ (D,’) is formed from the Q-rescaled field g*
(g”u®).

Proof: From A and B, it follows that D, (D, ) must have
the form

D, =V,g"V, + ¢V, +8,
(D, =uY, +u),

where g° is a vector field formed from the metric and its first
derivatives, g is a scalar field formed from the metric, its first
and second derivatives, u is a scalar field formed from »°, the
metric, and their first derivatives, and V, is the covariant
derivative of the metric.

It is well known that g” must vanish, and the only possi-
ble scalars g and u are given by

g§= §R9
where R is the curvature scalar of the metric, div u is the
covariant divergence, and £ and { are arbitrary reals. Then,
the condition C uniquely determines the numbers k, §, and ¢:
k=(n—-1)/4, é= —(n—1)/4n, =1 (65)
Q.E.D.

This indicates that there is only one operator super-
Hamiltonian H on . that is invariant with respect to all
transformations (9)-(11) and whose coefficients are
formed from the fields G#2, U4, and V, namely

H= —1g"V V, — R — iu"V, — }iV,u® +v.

u={¢§divu,
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What about the supermomenta constraints? On calcu-
lating the quotient manifold ,», we have, in fact, solved these
constraints “before quantizing.” Indeed, the coordinates x*
on »» are formed by » independent functions on .# that are
constant along the orbits: x* form a complete solution of the
system of differential equations

Pd49,x*=0.

To find such a solution in interesting cases (especially if we
are going to generalize our methods to field theories) is prac-
tically impossible. Moreover, the procedure described above
is a mixture of the Dirac and covariant reduction methods,
whereas we are interested in a pure Dirac method. Hence, its
value is only in showing that the theory we are looking for is
a unique one.

In I, we pursued the following strategy: we stayed in the
“large” space and constructed the operator constraints from
fixed classical representatives of the conformal transversal
class {G“2,U“,V} in such a way that the constructed quan-
tum theory was independent of the choice of the representa-
tive. The theory of the transversal connection developed in
the previous sections offers an alternative way.

The choice of the representative is associated with a par-
ticular transversal distribution 7',. Thus given the classical
constraints and the distribution T, we calculate the trans-
versal fields g*%, u*, and v (these are “algebraic” calcula-
tions). Then, we define the operator constraints as

H=JL+u+y,
H, = —i®2d, + ikc,,

(66)
(67)

where L is the transversal covariant Laplacian,
L= —V,8"V; —¢R,

and U is given by
U= — (i72)(V u' +u'V,);

here, V , is the transversal covariant derivative, R is the cur-
vature scalar given by Eq. (61), and £ is the factor (65). It
follows that the above operators are scalar operators on sca-
lar “wave functions” ¥ on .#, and that they have the confor-
mal weight 1, when acting on functions with the confomal
weight k of Eq. (65). Thus, the corresponding quantum the-
ory will be covariant and conformally covariant. With the
help of the developed formalism, we can show directly that
the operator constraint algebra closes:
Theorem 6: It holds that

(1/i)[H,,Hg ] = c4H,, (68)
where ¢”,,; are the structure functions of the classical algebra
4.

Proof: A simple calculation gives

[Ha’Hﬂ] - - [¢a,¢ﬁ]AaA + k(aaCB - aBC,, ).

From Egs. (5) and (12) we then obtain Eq. (68). Q.E.D.
To evaluate the other commutator is more laborious.
Theorem 7: It holds that

(1/7i)[HH, ] =c,H + ¢, ’Hg, (69)
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where
Caﬁ= - (i/z)(cAaﬁvA + vAcAaﬁ+ cAarcArB) +caﬁ’
(70)

and c,, ¢*,,?, and c,? are the structure functions of the classi-
cal algebra given by Egs. (30) and (22).
Proof: As the first step, we prove the relation

(170)[uH,] =c,u—c,"H,.
A straightforward calculation yields
[uH,]=[®,u]"d, + ku'(d,c,) + (1/2)3,(V ,u?).
By substituting (25) for the Lie bracket, we get

(1I/D)[uH, ] =c,u—c,H; + o,
where
iof =19, (V, u*) —ic, (V, u') + k(u'd,c, — c,%cp).
To show that .7 = 0, we calculate d, (V,,u"):

3, (Vu')y =V, (Vu')=V,V,u'+ [V,,V,]u'

We again use an orbit-parallel transversal orthonormal
frame x2. The divergence of any transversal vector v* is giv-
en by

V= (V,r')x4.

The requirement 4, Eq. (25), and the definition (46) of the
curvature tensor imply

3, (V,u') =V, (e u?) + [Pg,x, ] 2(Vpu)xs

(1)

A B
—R Baalt -

Equation (49) gives

R%p1a =X3R %y = §(n — 1) (9p¢, + €5a°c5).
(72)

Using this and Eq. (51), we find
3 (V,u') =, (V,u') + §(2 — n)(d,c,) "
+ 4. (Vput + §(1 — n)cgu).
Requirement 4 and Eq. (25) lead to the relation
Veou' = e, u?,
and Eq. (30) finally yields
3, (Vu*) = ¢, (V,ut) + 2k(u'd, ¢, — c,Pep),

which is equivalent to & = 0.
As the second step, we prove the relation

(170 [LH,]
=c,L+2(—ic" 2V, — (i/2)(V " 5)
— (i/2)c" "¢, PHp.
By substituting for the operators, we obtain
[LH.]¢
= — iV, Vg%V + iV, g%V ¢ — i3, R)Y
— k(e V18"V — V.18*%(Vsc, ).
We employ again an orbit-parallel transversal orthonormal

frame. With the shorthand V , introduced in Sec. VII we can
write

V. &'V =V 7V, ¢ = 9"V, Y,y

(73)
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and
V.V,00 -V, V0" = [D,x,]5V0" + R, 0"
By commuting the covariant derivatives we see that
VA AR EL L AA R
="V, V¢ +2(c% ¥, +4V,c°.°
+ 3¢, 7" PYHg ¥ + 2kn**(d,¢, ) (3, ¥)
— k(2¢°,53,¢5 + (V,¢%,P)cq + 2,7, Pep ),
and similarly,
ke, 1"V, ¥, — kn™V,o (Voc, 9)
= — k(n™V, V. )9 — 2kn(3,c0 ) (3,9)-
Hence we have
[LH, ] =ic, L + 2i( — ic* PV, — (i/2)(V ,¢*.7)
— (i/2)c*7c4,PHp — iR,
where
B =E9,R—Ec,R— k(7*V,V,c, + 2c"a”V,,c,3

+V,0%.Pc5 + ¢ ¢, Pep).
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However, # = 0 due to Eq. (64). Q.ED.
The transversal affine connection is thus useful not only
in revealing the geometrical structure underlying the con-
straints. It also provides us with the mathematical formalism
of covariant derivatives, their commutators, the curvature
tensor, and the Bianchi identities that facilitates a direct cal-
culation of the commutators of the operator constraints.
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An exactly solvable problem for the finite-difference Schrédinger equation in the relativistic
configurational space is considered. The appropriate finite-difference generalization of the
factorization method is developed. The theory of new special functions “the relativistic
Hermite polynomials,” in which the solutions are expressed, is constructed.

1. INTRODUCTION: THE RELATIVISTIC
CONFIGURATIONAL SPACE AND RELATIVISTIC
QUANTUM MECHANICS

The concept of the relativistic configurational r space is
based on the Fourier expansion over the “relativistic plane
waves”’

(rlp) = (( Po — pn)/mc) -1 ir(mc/ﬁ’

r=rn n=1 0<r<ew, p= Jmict + p’, (1.1)
instead of the usual plane waves e’ ™* (Ref. 1; see also Ref.
2). The variable 7 is relativistic invariant and can be ex-
pressed in terms of eigenvalues of the Casimir operator of the
Lorentz group C = N? — L? (N, L are the boost and rotation
generators):

C= (#/me)* + 7, (1.2)

where (1.1) is the generating function for the matrix ele-
ments of the principal series of the unitary irreducible Lor-
entz group.’ In the nonrelativistic limit

Ip|<me, r>fi/me,
the function (r|p) goes over into the usual plane wave
(r|p) - €™, (1.4)

The concept of the r space has firstly been introduced in
the context of the quasipotential approach in the relativistic
two-body problem*® (the detailed list of references can be
found in Ref. 7).

The quasipotential approach in the r representation pos-
sesses many features of the description of the interaction of
two (many) relativistic particles (extended objects) via the
action at a distance.'® The quasipotential equation for the
relativistic wave function ¥ (p) has the form

(1.3)

1
W(p) = (27)8(p( — — G
(p) = (27)°8(p( )q)+(217)3 (P

x [ vk, va0da,, (15)

) Permanent address: Laboratory of Theoretical Physics, Joint Institute of
Nuclear Research, Head P. O. Box 79, SU-141980, Dubna, USSR.
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where
Gq(P) = (2qo - 2170 + ie)‘ly

8(p( —)q) = V1 + ¢/m*?(p — q), (1.6)
a0, =— 9K
1+ K/m?2

The integration is carried over the mass shell of the par-
ticle with mass m, i.e., over the upper sheet of the hyperbo-
loid

pé —p* = m?*? (1.7)
{the p space of Lobachevsky).

Equation (1.5) has the absolute character with respect
to the geometry of the momentum space, i.e., formally it
does not differ from the nonrelativistic Schrddinger equa-
tion. We can derive Eq. (1.5) substituting the relativistic
(non-Euclidean) expressions for the energy, volume ele-
ment, and § function by their nonrelativistic (Euclidean)
analogs:

E, =q/2m—g, =@’ + m’?,
dk—dQ, =dk/J1+K/m*c?,
6(p—q)=8(p( —)q).

As a consequence of this geometrical treatment, appli-
cation of the Fourier transformation on the Lorentz group
becomes natural. After performing this transformation in
Eq. (1.5), we obtain the Schrédinger equation with the local
potential in the relativistic r space

(Ho + V(r) — 2go)¥(r) =0. (1.9)

The Hamiltonian operator H, is the differential-differ-
ence operator with the step equal to the Compton wave-
length of the particle;

H,=2mc’ch 9 + 21fic

mc dr r

(1.8)

)
mc or

_ ﬁ_z Adp o\ #/me) (8 /ar)

m r '

Taking into account the finite-difference character of

Eq. (1.9) and the group-theoretical interpretation of the
vector r, we can consider this scheme as the quantum me-

(1.10)
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i.e.,
W, = Cpe ™ “*"2 (2.14)
It is easily seen that the corresponding eigenvalue E, = w/2.

Now, using the operator a*, one subsequently constructs
other eigenvectors ¥, corresponding to higher eigenvalues

E,=w(h+1). 2.15)
We have
¥, =C,(a")"¥,
=C,(— 1)"[ ewx’ﬁ_d___e——mxz/zl iz
dx
=C,H,(Jox)e= =", (2.16)

where H, (Jwx) are the Hermite polynomials given by the
Rodrigues formula

H,(Jox) = (= 1)"e" (di.)" e,

X

(2.17)

11l. ONE-DIMENSIONAL RELATIVISTIC
CONFIGURATIONAL SPACE

The one-dimensional configurational x space is intro-
duced by the Fourier expansion of the wave function ¥( p),

1
\v(x)=———fdn x| PY¥(p), (.1
or » (x| PY¥(p
where
(x| p) = (po—p) = (3.2)

is the matrix element of the unitary representation of the
one-dimensional Lorentz group. The momentum space in
this case is the one-dimensional Lobachevsky space (the hy-
perbola)

pi—p =1, (3.3)
embedded into the two-dimensional pseudo-Euclidean mo-
mentum space ( pg, p). In the hyperbolic coordinate system

Po=chy, dQ,=dp/p,=dy, p=shy, (3.4)
where y = In( po + p) is the rapidity, we have
(x| p) = e€* (3.5)

These functions compose a complete and orthogonal system,

o | ipan, oy =5 [T e

=6(x —x'), (3.6a)
El;f (p|x)dx{x|p') = 6(p( — )PV =8(y — x)-
(3.6b)

The free energy and momentum operators are finite-differ-
ence operators

~ d . d
Hy=chi—, = —shi—v» 37
o ldx P s ldX 3.7

The plane wave (3.5) obeys the free relativistic finite-
difference Schrodinger equation,

(Hy — po){x| p) = (3.8)
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Using the formula ch y = 1 + 2 sh? /2, we can intro-
duce the relativistic “kinetic energy” operator A,

2 (3.9)

The Schrodinger equation takes the form
(k72 + V(x) — k220 (x) = (ho + V(x) — )¥(x)
=(h—e)¥(x) =0, (3.10)

that is indistinguishable from the nonrelativistic equation.
This reflects the absolute character of this approach men-
tioned above.

IV. THE RELATIVISTIC FACTORIZATION METHOD

Let us generalize the factorization method to the case of
the relativistic finite-difference Schrodinger Eq. (3.10). We
suppose that the ground-state wave function has again the
form (2.2) and the energy ¢,. Let us consider the finite-dif-
ference operators

M+ = F B s
V2
=+ 22 pogy L d o, 4.1
2 2 dx

In the finite-difference case we have to consider, instead
of the commutator, a more-complicated expression (the
generalized commutator)

(M~ M*],=M"&"M*

where

—M*te M, 4.2)

a(x) =20hi—i1—-p(x) — 2p(x). (4.3)
2 dx

The direct calculation gives
M- M*], = —2a(x)a. (x)sh(p. (x) — p(x))chp, (x)
+ a, (x)ch(p. (x) — p(x))sh p,(x)},
(4.4)

where

. d . d
=chi—p(x), p,(x)=shi— p(x),
p(x)=c ldx p(x), p(x)=s ldx px)

a.(x)= ch%}d;a(x), a (x)= sh-;;g;a(x).

(4.5)
In the nonrelativistic limit
_gspld 4 ,
2 dx dx
[M—)M+]w - [a—9a+]ﬂ
and the expression in the right-hand side of (4.4) becomes
— 3%p/3x*. 1t is natural to consider the situation with [cf.
(2.8)]
(M- M™*],

as the relativistic oscillator.

M*t gt

= const, (4.6)
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chanics on the covariant lattice, On the other hand, formally
the manifold r is the three-dimensional Euclidean manifold.
We can then think that this approach to the relativization of
quantum mechanics is equivalent to introducing the differ-
ential-difference Schridinger operator instead of the usual
second-order differential operator of the nonrelativistic
quantum mechanics. The formalism based on Eq. (1.9) car-
ries many features of the nonrelativistic quantum mechan-
ics. The scattering theory based on the partial phase shifts
was built up. The approximations usually exploited in quan-
tum mechanics were also constructed. In a number of impor-
tant cases (the Coulomb field and the potential well) the
differential-difference equation (1.9) can be exactly solved.
With this purpose, the generalization of the theory of special
functions that is based on the difference equations (recur-
rence relations) but not on the differential ones was devel-
oped.®
We stress the following important feature of this formal-
ism. The rapidities y or non-Euclidean distances in the Lo-
bachevsky space are defined by the relation
x = In(( py + |p|)/mc). (1.11)
They are canonically conjugated to r in the sense of the rela-
tivistic Fourier transformation. As a consequence, the un-
certainty relation holds,
Ar-Ay 2 fi/me. (1.12)
In this paper we consider the generalization of the problem
of the one-dimensional harmonic oscillator for the relativis-
tic configurational space. It is worthwhile to stress that the
important problem of the harmonic oscillator perpetually
attracts the attention of physicists from different points of
view. It plays an important role in models describing relativ-
istic objects with internal structure, strings, approaches al-
lowing to circumvent the no-go theorems, and in particular
to build up a new model exhibiting a generalization of super-
symmetry, etc.''~'* In contrast with another important case
of the Coulomb potential,'* which can be calculated as an
input of the one-photon exchange, the relativistic generaliza-
tion of the oscillator potential is not uniquely defined. We
shall require the relativistic linear oscillator to possess the
next properties: (a) exact solubility; (b) the correct nonrela-
tivistic limit; (¢) the minimization of the uncertainty rela-
tion; (d) the existence of the “nonrelativistic” dynamical
symmetry group SU(1,1); (e) the symmetry between the
descriptions in configurational and in momentum spaces.
As a starting point of our construction we use the finite-
difference generalization of the well-known factorization
method. This method was first employed by Dirac. Its sys-
tematic study was made by Infeld and Hall, the group-theo-
retical meaning was given by Moshinsky, Wolf, and other
authors.”

Il. THE QUANTUM-MECHANICAL FACTORIZATION
METHOD

Let us consider the nonrelativistic one-dimensional
Hamiltonian (we use in what follows the unit system
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fi=m=c=1)
1 g2
H= ——— 4 V(x), 2.1
> I + Vix) 2.n
with the positive-definite wave function of the ground state
Wo(x) = e~ P, (2.2)
and the energy E,
HY,=EY¥,. (2.3)
We can express V(x) in terms of p(x) and E:
1 dp\ 7
Vi =—[(-—) —-—ﬂ]—E. 2.4
) 2 L\ ox ox? ¢ 24

Taking this equation into account we can write down H in
the factorized form

H—E,=a%a", (2.5)
where
1 ( - a dp )
at =— —+ -
AR
1 i)
= eEPD ___gFe), 2.6
+ W ™ (2.6)
The a* operators obey the commutation relation
- %
a ,a%v]=—%L-, 2.7
[aa*) =25 @7
For the harmonic oscillator the commutator is constant,
[a",a*] = w == const, (2.8)
and we have from (2.7)
p(x) = wx?/2. 2.9
The creation and annihilation operators take the form
1 ( d ) i, . ,
at =—| F —+ox)=F — (P, + iox),
AN 2

(2.10)

where p, is the nonrelativistic momentum operator j,
= — i(d /dx). The following relations:

H=a%a" + (0/2) =4(a*a” +a~a*),

Hat =a*(H+w), Ha~ =a (H —w),
are easily derived.

These relations give us the method for constructing the
eigenvectors and eigenvalues of H. If ¥ is an eigenvector of H
(HY = EVW), the functions ¢* V¥ and ¢~ ¥ [provided that
they are nonzero and belong to L 2(R)] and new eigenvec-
tors corresponding to the eigenvalues £ + w and E — o, re-
spectively,

H@*¥)=a*"(H+ o)¥ = (E+w)a*¥y, (2.12a)

Ha V)=a (H—o)¥ = (E—w)a" V. (2.12b)

Since the operator H is positive definite, one can imme-
diately find the lowest-energy eigenstate W, as that one for
which

(2.11)

0V, =2 -z 4 guiny g (2.13)
2 dx
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It is easily seen that the solution of this equation coin-
cides with the nonrelativistic oscillatory function p(x)
= wx?/2. In this case a(x) = — w/4, and a(x) has to be

a(x) = [cos(wx/2)]17". 4.7)
We have [cf. (2.10)]

M* =4 —2’—eiw/8(sh-

2 2 dx
(4.8)

In the oscillator case the generalized commutator (4.2) is a
combination of the conventional commutator and anticom-
mutator

[M—’M-i-]w e-m/4M~M+_ew/4M+Mﬁ
=ch(w/4)[M ~ .M *]

—sh (w/$){M * .M ~}. (4.9)

It is easy to see that

IM~—,M™"], =4sh(w/4). (4.10)

Using the Baker—Campbell-Hausdorff formula we can

write M * in the form [cf. (2.10)]
M*= ———21—— ( F— a)x)
V2 cos wx/2 dx
=———2l-———sh—l-ai. (4.11)
V2coswx/2 2
Then, defining the operator
H—_ U gt (4.12)
cos wx/2 2 dx
we write
M=E= _—*_ Leimxz/Z c@eiwxz/Z' (4.13)

2
The Hamiltonian of the relativistic linear oscillator is

h={M* M}, =i{e "M+ M~ +e~*M~M*}

2

2
:e‘”/4M+M_+eO=2( 1 ch L d)
cos wx/2 2 dx

—2c¢h % (4.14)
where

e, = 2 sh(w/4). (4.15)
It follows from (4.9) and (4.14) that

[M+th]_, = —2sh(w/2)M*, (4.162)

[AM~], = —2sh(w/2)M~, (4.16b)

then M* and M ~
energy levels:

are raising and lowering operators for

Y, =hM*VY, =e, ¥V, ,, (4.17a)

RV, | =MV, =e, ¥, ., (4.17b)
where

e, .1 =e"%e, + 2 sh(w/2). (4.18)
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From (4.15) and (4.18) we derive by induction the for-
mula for the energy spectrum:

e, = 2(e!?"+ V74 _ ch(w/4)). (4.19)

V. WAVE FUNCTIONS

We look for solutions of the relativistic Schrodinger
equation

Y, (x) =e,¥,(x), (5.1)
in the form
Y, (x) =e~“*"h (x). (5.2)

The functions 4, (x) “the relativistic Hermite polyno-

mials,” obey the finite-difference equation
(I?z—e,, —2chaw/4)h,(x), (5.3)
where
Rl _povngp b 4 e X2, (5.4)
cos wx/2 2 dx

Using (4.13), (4.17a), and (4.18) we define 4, (x) by the
“relativistic Rodriguez formula™:

h,(x) = (— 1/0) e Dhe— o, (5.5)
By () = — (1@)e™ De~%h, (x), (5.6)
ho(x) = 1. (5.7)

It is easy to show by induction that 4,, (x) are polynomials of
nth degree of the variable sin(wx/2). The polynomials
h, (x) satisfy the following recurrence relations: :

B, (—x) = (—1)h,(x), (5.8)
Jo 9 h, (x) = 8¢"* sh(naw/4) h,_, (x), (5.9)
By, (%) ——e l(n+1)/4]wsm(£)£)h"(x)
> 2
+ 3 h 2L pernmey  (x)=0 (5.10)
w
i d

no/tp (x) —ch — -2 h, (x
e  (X) e (x)

+itan92’ishé§;hn(x)= (5.11)

Let us write down the explicit expressions for polynomials
h, (x) for the lowest values of n:

hy(x) = (4/\/_ Ye’* sin(wx/2),
h w/4[2w/4 sin? X_shﬁ]’
2(x) = € 2 2
2 3w/2 x
hy(x) = pokd sin [2 sin
+€_3"’/4Ch£—1], (5.12)
4
ha(x) = __6_ e7(u/4[4e3(o/4 sin? X

+4 (ch = ch e 4)sm2 el

2
4o sh &2 h}_ﬂ
4 4
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The polynomials 4, (x) with different n values are or-
thogonal with the weight e~ “~ cos(wx/2). To prove this,
we multiply Eq. (5.11) by e~ “*W¥, (m#n) and subtract
the same expression with m = n and integrate over x

f (\Ilmch—-i——d—\l/,,—\l/,,chi—i‘llm)dx
—w 2 dx 2 dx

— (€[(2”+ /8w e[(2m + 1)/8]«1)

(5.13)

><J‘oo cos (—%x—) ¥, (x)V¥,, (x)dx.

We transform the second term in the left-hand side us-
ing the identity

f_ fx) (ch-;—gdx—fp(x)) dx
[ (o L)oo

which is valid provided that f{x) and @(x) vanish at
X = + oo together with all their derivatives. In our case
these conditions are satisfied and we see that the left-hand
side of (5.14) vanishes.

In the case m = n the norm can be calculated using the
recurrence relations. And finally, we arrive at the orthonor-
mality conditions

(5.14)

J e “ h,(x)h,, (x)cos _a;_x dx=96,, J,,

J"=JE(_8_)n

o \o

2

2n +2n_1a))sh—aish2a)---shnw.
16 4 4 4

(5.15)

Now we derive the integral representation for 4, (x).
Let us write the identity

e _ | ®

Ve Y-«
Applying the recurrence relation (5.5) we have
e wx? hn ( x)

1 e i1'r/2.2 " * 2ixt , — t/w
= T, (t)e'™ e dt,
NE) Jo - o

Xexp(

e e~ /0 gy (5.16)

(5.17)
where T, (¢) are polynomials of ¢, satisfying the recurrence
relation

sh te = "/“T, () =Ch%;1‘£t (e 7T, ., (),

To(t) =1. (5.18)

In the nonrelativistic limit 7", (¢} — ¢ and we come to the
integral representation for the usual Hermite polynomials'®:

e—lu.x:Hn (‘/Ex)
—in/2, n oo Y
S (e z)f " e~ Vo dr (5.19)
Vo \ o -

The T, () also satisfy the recurrence relations
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b ehten2 % (n
8 2 4 dt

—ch™ 28T (0, (5.20)
8 2 4 dt

2 d 2
—1 /wT t 2 {n+1)/4]lew Sh__ai__ e—l /mT t
e n+l( )+ e 4 dt( n( ))

~2 sh%"e“"* DAlo gl T (1) =0, (5.21)
T, (=S i —chna/d) g 0 d )y
sh(nw/8) ch(t/2) 4 dt
(5.22a)
T, (=22 0 cht —ch(no/d)) 0 d ()
ch(nw/8) sh(t/2) 4 dt
(5.22b)
For lowest values of n we have
T,(t) =2e*/"¢sh(1/2),
T,(t) = 2¢”’*(ch t — ch(w/4)), (5.23)

Ty (1) = 4¢'*° sh (£ /2)(ch ¢ — ch(w/2)).

Vi. COHERENT STATES
The commutator of the coordinate x and rapidity
~ . h d

= — e e (6.1)
operators is equal to
[x.x] = i(Ai/mc). (6.2)
Then, the uncertainty relation
(Ax)2(AY)*>#2/4m>c (6.3)
is fulfilled.

Let us define the relativistic coherent state |a) by

cos(wx/2)M ~|a) = — if2/w(sh(ie/2a))|a),
a=a,+ia,.

(64)
It is easily seen that |@) has the form

o= (2) o] -] 2]

(6.5)

where

a, =xpo/2, a,=yo/ V2w, (6.6)
and x, and y, are averages of the coordinate and rapidity,
respectively. This corresponds to the fact that states (6.5)
minimize the product of uncertainties, i.e., the equality sign
in the relation (6.3) holds.

VII. THE GENERALIZED ALGEBRA OF THE SU(1,1)
DYNAMICAL SYMMETRY

Let us introduce the operators [cf. Ref. 17],
L* = — [4(shw/2shw/4)V?] "' (M+*M ~)'°M*,
L~ =[4(shw/2shw/4)"} )" '"M~(M*M )2,

L3 =(2sh(e/2))" ' & (7.1)
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It is easy to show that the algebra of these operators is
closed in the following way:

[L+L~),, =L%

[L +’L3]a; = —L +7
{L 3,L “lo=-L",
where the subscript @ denotes the combination of the com-
mutator and anticommutator according to (4.9). For the
Lie algebra thus generalized we have, instead of the standard

symmetry relation and the Jacobi identity, the following re-
lations:

(7.2)

[x, 5], = — x]_. (7.3a)
[[x 9]02]e + [[22]ox]e + [[2X]0s V]

+ [[xy102] —0 + [2]ex] —0

+ [[2x],,¥] -0 =0. (7.3b)
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Symmetry operators and separation of variables for spin-wave equations

in oblate spheroidal coordinates
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A family of second-order differential operators that characterize the solution of the massless
spin s field equations, obtained via separation of variables in oblate spheroidal coordinates and
using a null tetrad is found. The first two members of the family also characterize the separable
solutions in the Kerr space-time. It is also shown that these operators are symmetry operators
of the field equations in empty space-times whenever the space-time admits a second-order

Killing-Yano tensor.

I. INTRODUCTION

Interest in the separation and solution of the nonscalar
equations of mathematical physics in Kerr space-time began
when Teukolsky found that separable solutions were possi-
ble for some of the Maxwell and Weyl scalars. Chandrasek-
har? was later able to obtain a separable solution to the Dirac
equation. Separable solutions to massless spin s equations
were studied by Dudley and Finlay® while Carter and
McLenaghan* were able to understand Chandrasekhar’s
separation of Dirac’s equation in terms of a differential oper-
ator that characterized the separation constant appearing in
the solution. That is, the separable solutions to Dirac’s equa-
tion were found to be eigensolutions of the differential opera-
tor, the eigenvalue being the separation constant appearing
in the solution. Similarly, the separation constant appearing
in the solution to Maxwell’s equations in Kerr geometry has
been characterized by Kalnins et al.® in terms of a second-
order differential operator. These differential operators
characterizing the separation constants are also symmetry
operators of the various field equations in question. That is,
they map solutions of the field equations into solutions. The
essential property that allows the construction of such oper-
ators is the existence of a Killing—Yano tensor in the Kerr
space-time.

The other constants associated with the separable solu-
tions of various field equations in the Kerr space-time are the
Starobinsky constants. Torres del Castillo®® has shown, for
various fields in type D space-times, that one can construct
differential operators of order 2s, s = 0,4,1 that characterize
these constants. Physically, Killing-Yano tensors and oper-
ators constructed from them have been associated with an-
gular momentum by Carter and McLenaghan* and by Dietz
and Rudiger.*'°

In this paper we take the Kerr metric and a Kinnersley
null tetrad and subsequently place M = 0. We then find that

- the solution to the massless spin s field equations obtained
via separation of variables (and with the aid of a generalized
Hertz potential) are characterized by a second-order differ-
ential operator. We also show that this differential operator
is a symmetry operator of the field equations.

Ii. PRELIMINARIES

In this paper we will use the abstract index and spinor
formalisms of Penrose and Rindler."! For the purpose of this
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paper we shall also refer to those components of a symmetric
spinor that are of extreme helicity as the extremal compo-
nents.

The Kerr metric describes the space-time in the region
exterior to a rotating black hole, its line element being

ds2=(1 2M’)dz B 4
pp* A
Pt do? — (r2+a +2aMrs1n 0)
po*
xsin? 0 dg? + 2Mrsin’ 0 4 4y (1
where
p=r+iacos@and A =r* —2Mr + a*. 2)
We shall use the null tetrad
1°= (1/28) (# + %,A,0,a),
n® = (1/26p*) (P + @, — A,0,a),

m® = (1/2p) (ia sin 6,0,1,i csc 8),

m° = (1/{2p*) ( — iasin 6,0,1, — i csc ). 3)
In this tetrad the spin coefficients are

€=0, ﬂ=cot0/2ﬁﬁ, a=mw—p*

r—-M
y=p+ =M
2pp*
1 iasin 8 iasin @
p=— T= ———, T=— (4)
\/-Z-p*, \/iﬁp* \/— *2
U= — a , k=0, 0=0, A=0, v=0,
V255
while the only nonzero component of the Weyl spinor is
v, = — M/p*. (5)

Following Chandrasekhar'? we define the differential opera-
tors

D,=9, +iK/A+2s(r— M)/A,

D=3, —iK/A+ 2s(r— M)/A,

L. =0+ Q+scoth,

FLl1=0,—-Q+scoth, (6)
where
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K=0(F+ad*)+ma and Q=ocasin@ +mcsch.
N

A second-order Killing--Yano tensor is an antisymmetric
tensor K, that satisfies

VK. =0. (8)

Being antisymmetric, K,
metric Spinors as

K, =K s =3(€45Kap +6ABKA'B')' 9

The Killing spinors K ,, and K, 5 as a consequence of (8)
satisfy

Vus-Kse, =0,
ViuKpc, =0, (10)
Vou K2+ V5K, 7 =0
Defining the quantity M ,,. by
MAA’=VBA‘KAB’ (11)

we can write the derivatives of the Killing spinors as

, can be written in terms of sym-

Vi Ksc =3%€45Mcy 4,
ViaKpe = — €My, (12)

The derivative of M, ,. is given by

VeaMpp =3€4.5Wep —1€4p WA'B" (13)
where the symmetric spinors W, and W,.,. are defined by

Wy = 3 ¥ 5c0K @

W,p = g@,g,wkc“". (14)
Note also from (13) that V. M. is an antisymmetric ten-
sor, that is, we have

VM, =0, (15)
which is the condition that M, be a Killing vector. Other
relations satisfied by the above quantities are

E _ EF
V2 5cKpe =3 €paVac erK

= leép 4 Wace)
wE' % _ v ¥ E'F’
V* o pcKprg =3€paVYpcyerK
=1€p Wacs (16)

and
W,cKgC= + le s WepK @,
WA 'C’EB‘C’ = +1€,5 WC'D'RCIDI- 17

The antisymmetry in the free indices of the above two quan-
tities being particularly useful. The derivatives of W,z and
W, g are

vAA’ WBC = 2‘PABCDM DA’
Ve WB'C' = - 2-\1]-A'B'C’DlMAD” (18)

expressions which can be obtained by examining the consis-
tency condition on M, ., that is, from

[VAA'»VBB' ]MCC’ = — €y 'B'WABCDMDC'
- GABWA'B‘C’D'MCD" (19)
We define the differential operator , J,, by
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aanr =2K. Ve + (7/3)M 44
=K, Ve, +K,. Ve + (9/3M,,.. (20)

This operator will be the essential building block for the sym-
metry operators we shall encounter later. The commutator
of Vg with ,J, . is

[VBB'n,JAA'] =KAC[VBB'sVCA'] +EA’C’[VBB"VAC‘]
+3(M 5 Vo — M5, V)

~

+ (17/6) (€54 Woa — €34 Wpqr). (21)
We also define the vectors U,,. and U,,. by

KABUBA' = ‘%MAA',
KA'B’UAB' =§MAA'~ : (22)

These two vectors U,,. and U,,. will later be useful in
choosing gauge fields that will in turn enable the separability
of a decoupled equation for the extremal components of a
generalized Hertz potential representing a massless spin s
field. The derivative of the Weyl spinor is also related to the
vector U, ,. by

VAA . \IIBCDE =35 U(AA ’ WBCDE) - (23)

In the Kerr space-time the only solution of (10) to within a
common multiplicative constant, is

'Sm: ‘:F”" K02=K11f0» (24)

Koy =5, Koy =Ky =0,
whence the only nonzero components of K, ;.55 are

Koo = —Kigor =1

Koy1r = — K,y = ia cos 8. (25)
The components of M, . are
M.=——3—, Mor=_iiasin9’

2 2P (26)
Mw'ziiasine, ' 3 A ’
2 7 2

and the components of W, and W, 5 are

Wo, = 3p*¥,, Woo =W =0,

Won' = —3p¥3, WO’O’ = Wl’l‘ =0, 27
while those of the vectors U, ,. and U,,. are
Uw =p; Uy =7, Uy =-m Uy =—p
U =p*% Upy = —7*, Uy =7* Uy = —p*. (28)

The minimally coupled first-order equation for a massless
spin s field is

VA bag,a,, =0 (29)

1t is well known that in a space-time that is not conformally
flat this equation is inconsistent for s> 1. In particular when
5> 1 and for the case of an empty space-time ¢, , must
satisfy the consistency condition

‘PBCD(AS ¢A,..,A,,)BCD =0. (30)

In the Kerr space-time and using the null tetrad (3) and
defining a new set of functions ¢, for k=0, ..., 2s by ¢,
= p"*¢. Egs. (29) become

E. G. Kalnins and G. C. Williams 1740



[£s_,—(25s—2p—1)(iasin6/p*)] P,
Do+ (2s-2p-1)(1/p*)] ®, 1 =0,
A[DY_, — (25—~ 1)(1/Y] @,
+[ L+ 2s—2p—1)
x(iasinﬂ/ﬁ*)]q)pﬂ =0,

where p =0,...,2s — 1.
The following method of obtaining a solution to the
massless spin s field Egs. (29) is due to Cohen and Kegeles. ™

If the potential P44 and an associated arbitrary gauge
field G5 > both of which are symmetric in their primed
indices satisfy

B(A} Ay A)B’ B(Al~y Ay A}
vy, P 28 _yPiiG,

(31)

— (25— 1)(s — 1), AHPATAWEC _ o (32)

then a spin s field constructed from the potential and gauge
fields as follows:

¢A....A23 = V(AuA {VA,A 3 vAz:— 1431

% [vAz,)Ag?A;MAiS_ GA,,)A;”'H’_‘], (33)

will satisfy the spin s field Eqgs. (29) provided those equa-
tions are consistent. When the space-time admits a second-
order Killing—Yano tensor and the quantity U, ,. as defined
by (22) exists, we can make the following rather special
choice of the gauge field:

Gyt o= — 25T, P, (34)
This choice of gauge field was made by Cohen and Kegeles
though not in this covariant form. With this choice of gauge
and in a type D space-time Eqgs. (32) decouple. In addition,
in the Kerr space-time the extremal components of the po-
tential will now satisfy separable equations. That is, if we
look for solutions of the form f(r,8)¢e”* * ™ for P** and
PV we find that

[AD}_, Do+ £1_,.2,

+2(2s — 1)igp*TP* " =0,
[A@¥+sg0+$t+s$—i ,
—2(2s+ D)iop*1p~¥P" "' =0,

s

(35)

which are separable and have solutions

DO---0 __ iot + img
P =R_.S,,e )
P

1’___ﬁ2:R+SS

eio’t + imnp, (36)

-—5

where the functions R | ; and S , satisfy Teukolsky’s equa-
tions, namely,

[AZ]_ Do+ 2(2s— Dior]R_, = AR _
[A2 2t —2(2s— Dior]R ., =AR _,,
[ZL1_ &L +2(2s—1)oacosO)S,., = —AS,,,
[£,_,ZLT—2(2s—1)oacos 0]S_, = —AS_,.

(3

37
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If we form ¢, , from a potential having %" as its

only nonzero component, then the extremal components of
the field ¢, ,,_are

o= [1/(D)*1 D3R _.S , e+,
¢, = [1/(2)¥p**].7, _,

X“‘?Z—s“.g gsR_sS+seiat+im¢' (38)

s—1

Using the Teukolsky—Starobinsky identities'* we can write
these two components, up to some constant of proportional-
ity, in the following form:

—_ iot + im,
¢0_R+sS+se ‘p)

¢2S —_ (l/ﬁ*Zs)R_sS_seiar+iqu. (39)

IN. INTRINSIC CHARACTERIZATION OF THE
TEUKOLSKY SEPARATION CONSTANT

Suppose we form a solution ¢, _,, for the massless spin
s field Egs. (29) by generating it from the extremal compo-
nent of a generalized Hertz potential as in (33). We will also
suppose that the space-time is the Kerr space-time if s < 1
while if s > 1 we will restrict ourselves to the oblate spher-
oidal coordinate system and null tetrad obtained by placing
M = 0. The extremal components of the solution may then
be written in the form given by (39). The other components
of the field take on more complicated forms. The separation
constant A appearing in the solution is characterized by the
following operator:

[Kat® Voo — M4 ®'] [K %57 Vi
+ (2s/3)M %, ]¢B|A2-~Azs)

_ B IB
—i—zJ(A,| asd B'¢B|A,...Ay)

= %¢A1“’425' (40)
For brevity we will also sometimes write the above as
Fb=1g. (41)

The extremal components of this identity are relatively easy
to verify using the form for the extremal components of the
field given in (39). Since it is not possible to verify directly
that the remaining components of this identity hold for arbi-
trary values of the spin parameter s we are forced to proceed
by a different method. Firstly we will show that the operator
and its action on the spin s field as given by (40) is a symme-
try operator of the spin s field Egs. (29) whenever those
equations are consistent. That is the operator maps solutions
into solutions. The following identity holds for any empty
space-time which admits a second-order Killing-Yano ten-
sor and for any spinor ¢, ,, . In particular we do not as-

- sume that ¢, ,, satisfies a field equation of any sort. For s

> 1 we have
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Ve el “arBuin, i
= [§+2"(le C'n—ZJAA‘ - §J(BIIA’11JAC, - W(BZIC‘MAA' ] + (1/3S)V(BZ|C'[KADMDA’ + kA’D’MAD’ ] ]VCA l¢AC|B,~~-Bh)
+ [(1/69)((7 — 45) — (£ + DWW is "M T4 + UE+ D) [Wis, ST * + €05, W4T 4,0 ]
— Wy —48) + (25— 2V, 4 (5, W+ 1(25 — 2)W 5, T VPucip, -5,y + (25— 2)[ — (1/125)V 5,
[KAC;V'B}IM"_ 31?,4 ’D’K'A’D’wACMlBJ‘] + gJ(BIlA’KA'C'\I,ACMlBJI + I?A'C'\IICM(B:N#’AA’ ]¢ACM|B.--£2,)' (42)

"To prove this, first we split the left hand side of (42) into two parts. Removing the index C from the symmetrization we
find that

VCC’§J(C| 4 lﬂJAA '¢A | By« By,)
= vcc'g.’(leA,.,’JAA '¢AC|B]"'-BZS) + (1/4S)V(BZ| C’[;JCA r.,lJAA‘ - §JAA ',,,JCAI ]¢AC|B,"'BZS) . (43)
Taking the first term on the right hand side of (43) and applying (21) twice to pass V" through .J 5 /*’

yeer J A’ JA ¢
EV(B 7Y A'VAC|By - By) , , , - )
— §J(E;IA [’nJAA',vCC + %[MAC VCA’ — MCA'VAC,] +(1]/6) [G,CA' pV'CA _ GCAWC A"] + KAD [vCC ’VDA' ]I ,
+KA'D [VCC ’vAD‘ ] ]¢AC|BJ"'32,) + [i[M(BﬂCVCA - MCA v(Bz| ‘ ] + (§/6) [GCA WC(Bz' - ec(le WCA ]

»J %4 we obtain

+ Ky P [V ]+ B2 [V Vim0 1100 4 bacis 3 (44)
By cycling the two contracted indices 4 ' and the index C' we can write
IV = [y 0 e — e mgarnd TV (45)

Using (21) to pass V*" through ,J“,. and applying some of the identities (10)—(18) we can also write
%M(Bﬂ C'VCA 'nJAA ! ¢AC |By- - By)

= [Mp, WV — M MV — () — M5 WA J (25— DM 5, WA Bucip,m,y-  (46)
Again applying the identities (10)-(18) we obtain

vV Tiay o M ard w
£5B| Y A'TACIB By _— : ’ '
= [[ex2dms 0 2d 0V = g VN — M5 M NV — 4 — 8) T 5, T —3(9 — 4)

XM(32| C’WAC_ %MCA'V(le C,nJAA' + (5/6) WC(BEITIJAC’ + %(5 + 4)6(82| CWA'C’WJAA’
+3(25 = 2) gy o5, WA+ (25 = 2) Wi, T | ucis, 5,
+ (25 = 2) [oJon, Ky CVI M gy + KV VMg 100 Yy 1B acrtinrp - (47)

Looking at the second term of the right hand side of (43) and using the definition (20) of the differential operator ,J ,,,.,
and making use of the symmetry in the indices 4 and C we have

V(le C’[gJCA 'nJAA' - gJAA'nJCA' ]¢AC|B_,~--BZ,)
= V(le C’[KCDKAE [VDA”VEA'] + 2I<CDI~{”"E'[VDz1"VA'E' ] + I?A'DII?A'E’[VCD'»VAE' ] +2K° (VDA’KAE)VEA,
+ 2K P (Vp KAEYVAL, + 2K, P (VO KA EY)V + 2K, 2 (Vo KAEYVAL 4 (29/3) J €0 M
+ E/DMC 10T ** |bacip, 5, (48)

Applying the identities (10)—(18) and noting that the field spinor and the Killing spinors are symmetric and that the
quantities K ,c Wz and M €,. M **’ are antisymmetric, and by cycling indices in some of the terms involving both the Killing
vector M ,,. and one or other of the Killing spinors, (48) becomes

V(le C'[é“’CA'fr"M’ - §JM'7IJCA’ ]¢AC|33~~32,)
=4V, © [4K p[MAVP . + MPAV  1ucis, -8,
+ [29.0 <, M + 2§MCA’17JAA,]¢AC|B._‘--~BZS)

— (25— D [K*W™ 5 +3K,p K42 WMy 1bacais, 5,0 |- (49)
i
We now note the following three relations: first, (1/65)V 5, CKA MCAVP,. Bacise By

%M CA ,V(le C’-r]JAA ’ ¢AC | By -+ Byy)
= [%V(Bﬂ C'MCA'nJAA' =Wz, CnJAC
+é5(82|CWA‘C'qJAA' ]¢Acw,-~-sz,)- (50) + V(le C’kA‘D'MAD'VCA’]¢AC|B,~-~BZ,)’ (51)
Second, using the definition (20) of ,J 4,. we have and finally

= — (1/69) [ Vg, M, T4,
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(9/125)V (5, CngcA’MAA,¢AC|B_,~~~B2,)

= (q/lZs)V(Bz, ‘M InJAA'¢AC|B,~--Bz,)’
since

gJ"",,,MC’A'=O. (53)

Reforming (43) from its two pieces as given by (47) and
(49) and making use of the three relations (50), (51), and
(52) we obtain the desired result (42). One can also prove

an analogous result for the cases s = s'. It therefore follows
thatif ¢, ...,, is asolution of

(52)

VAA‘¢AA2~~~A2S=O’ (54)
then the new field
Xp,-8y, = el sy 0 "4 Bu)n, 5 (55)
is also a solution whenever
—ds=¢+2and s>l ifV =0,
n I3 3 ABCD (56)

1]—-4s=0=§+23nds<1, if\I’ABCD#O'

Thus under these conditions the differential operator (40) is
a symmetry operator of the spin s field equations.
Having verified that the new field y , ... ,, is a solution of

the massless spin s field equations we now form the following
field:

Cuyoony, =Xy ty, — APty s (57)
where the field ¢, ..., is obtained from a generalized Hertz
potential which has P% " as its only nonzero component
and where A is the separation constant appearing in the solu-
tion for this one nonzero component. Clearly the field
$4,---a,, 18 a solution of the spin s field equations. It is our
intention to show that this field is identically zero and hence
that the operator and its action as given in (40) characterizes
the separation constant A. Carter and McLenaghan* and
Kalnins et al.® have already shown for s < 1 that 4 is charac-
terized by the operator (40). We can therefore restrict our-
selves to a flat space-time, i.e., place M = 0 and consider the
cases where s> 1. One can verify by explicit computation
that y, = IAé, and y,, = 14¢,, and so the extremal compo-
nents of {, ...,, must vanish. Further from the form of the
operator (40) and since  and @ are ignorable coordinates we
can also conclude that the other components of §, ... ,, must
have the same 7 and ¢ dependence as é,, ..., . Thus we can
write

§0=§2s=0

and
;j =.f] (r’e)eiat+ imqa.

(58)

(59)

We will now compare the behavior of the left-and right-
hand sides of (57) as @—0and also as - 7. The argument is
an inductive one in that we will show thatif {; ;, = Othen{;

= 0. Note that we already have {, =0. If we write Z,
= p**{, and suppose that for some j>0wehave Z, | =0
then from (31) we find that Z; must satisfy

[Do+ (25— 2+ 1)(1/p%)]Z; =0,
[£] .+ (2s—2j+ 1)(iasin 8/p*)]Z, = 0.
Intergrating these equations we have

(60)
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a—ir
\/;2 + a2
X (1 + cos @)™ (sin @)~/ — meit +ime (61)

From the form of the solution it is clear that in the neighbor-
hood of @ =0,

§ =017 "[bo(r) + by ()8 + by ()0 + -]+ e,
(62)
where we have dropped the subscript j from the functions

b, (r). Letting @ = 7 — @ we find that in the neighborhood of
=,

& =0T "[bo(r) + Bi(rB+ by(r) B2+ -+ -]+ ime,

(63)
We now consider the behavior of the right-hand side of (57)
under the assumption that the field ¢, ...,, obtained from
the generalized Hertz potential is regular at 6 =0 and
6 = . Firstly note that we can write ¢, = f; (r,0)e** * ™ for
each j and that from (31) we can generate a decoupled sec-
ond order equation for ¢;. We find, when M =0, -that
&, = p¥¢; satisfies the separable equation

["YT—S+]$S—/‘ +Aglgl-—j

J
—2(2s—2— 1)iogp]®; =0. (64)
It therefore follows that we can write ¢; as a sum over A of
terms of the form

(1/p*)R(rA)S(6A). (65)

Now since to first order in 8 the functiong* = r — ia cos 6is
independent of @ as 80 and also as §— 7 it follows that to
first order the & dependence of ¢; in the neighborhood of
@ = 0 and @ = 7 will be determined by the behavior of the
function .S in these regions. From (64) we find that § satis-
fies

(L] si1 L, +2(2s— 2 — 1)oacos 8 |S(6A)
= —AS(6). (66)

From an examination of this equation we find that the regu-
lar solution for S behaves in the neighborhood of § = 0 as

m

é—j =Aﬁ*‘(2“j+ l)e—iai»[

S=0"—j+""(c‘0+c,0+c202+ o), (67)
while in the neighborhood of 8 = 7 we find
S=01"7-"G +¢0+8,0%+ ). (68)

Given that ¢ is nonsingular we must have in the neighbor-
hood of & = 0 that

%/l¢j = els_j+m|[go(r) +8,(r)6
+8,(r@* 4 - ]+, (69)

Now (.7 ¢); will in general be formed from second-order
derivatives of ¢; and first-order derivatives of both ¢;_, and
&; . 1. Thus in the neighborhood of 8 = 0 we will have

(T8);=0F"*"h_(NO 2+ h_(rno~"
+ ho(r) + (1) + -+ ]+ ™%
Subtracting (69) from (70) we find that we must have
&= 0"+ " =2ko(r) + K, (18
+ky(r)@2 4 -+t ime

(70)

(71)
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in the neighborhood of 8 = 0. Similarly in the neighborhood
of 8 = 7 we have

&=08k—I=m =2k (r) + k(r)E

+ky(r)6* + (72)
Now if §;_, =0 and we assume that {; #0 then it is also
required that §; have the behavior specified in (62) and
(63). Thus if the two differing behaviors of §; are to be con-
sistent we must have

. ]eim‘+ imw.

S—j—mz|s—j+m| -2,

s—j4+mp|s—j—m| 2. (73)
The above inequalities have a solution only when
— lI<m<landj<s + 1. (74)

Thus for |m| > 1 we must have §; = 0 and so by induction all

the components of ... ,, will vanish and so for |m|> 1 we
obtain

Té =1, (75)
as desired.

To deal with the case where |m|< 1 we note that since we

obtained ¢,,...,, from a generalized Hertz potential we can
write ¢; as
¢j =%R—3S+s’ (76)

where 7, is a differential operator of order 2s. We can there-
fore write (75) as

[Z,_.5;_ ,+L2?’ +,,
=UH mn

where the dlﬂ'erentlal operators L, are of second order while
the operators L , and L ; are of ﬁrst order. The only relations
existing on the functions R _, and § , , by which this identi-
ty could hold are the Teukolsky equations for the functions
R_,andS .. Accordingly for some given j we must be able
to write

(L1, + L+ L
= gry-r + 99'7-8!

%+I]R-—-‘S+s

.._f +s:

J+1 j+l] "M%
(78)

where &, and Y, are in general differential operators of
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order 2s and 7, and .7, are the “Teukolsky operators”,
that is

T, =MD _ Dy+202s— )ior— A4

T =Lt &L, +2(25—1)oacos 8 + 4, (79)
for which 7 ,R _, =0and 7 ,S, , = 0. Now we note that
Eq. (78) may be split into two parts, namely those terms

which are independent of A and those terms which are linear
in A. We find that

and hence that
[LJ x;_ 1+L%+Lj+1 K1) —UH,
T s =G(T, + T ), (81)

thus &, and ¥, will be uniquely determined.

We have established that the above identities amongst
the various differential operators must hold for |m|> 1.
Further, the m dependence of the various terms in any given
identity is described by a polynomial in m. Since any given
identity holds for an infinite number of values of m it must
also hold when m< 1. We therefore have

T ¢ =4id,

for all values of m.

(82)
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Lobachevskian Dirac fields
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Free Dirac fields in a Lobachevskian space-time (the Euclideanization of the anti-de Sitter
space-time) are studied. These fields, which are related in the flat-space-time limit to the
Euclidean Dirac fields, act in a space 3, which again has Fock space structure. The two-point
Green’s function for Lobachevskian Dirac fields is obtained in terms of intrinsic geometric

objects.

I. INTRODUCTION

In this article we continue the study of the quantum field
theory in a Lobachevskian space-time (the Euclideanization
of the anti-de Sitter space-time) by group-theoretical meth-
ods that we began in Ref. 1. Having constructed a Lobachev-
skian Bose field, our aim is to find a Lobachevskian Dirac
field by a similar procedure.

The following is a short outline of the material to be
presented here. We will construct Lobachevskian Dirac
fields by starting with creation and annihilation operators
satisfying the usual canonical anticommutation relations
and then defining the fields in terms of these operators. This
Fock space construction is carried out in Sec. IV and goes
quite parallel to ordinary Euclidean Fock space construc-
tion. For this purpose in Sec. IT we recall the definition of a
Euclidean free Dirac field; while in Sec. II1, we discuss the
interrelation between P-induced and K-induced pictures of
the principal series representation of SO, (4,1). Some math-
ematical results necessary for Sec. IV are given in Appen-
dices A-C.

Il. FREE EUCLIDEAN DIRAC FIELDS

In this section we summarize the theory of free Euclid-
ean Dirac field of mass m,> 0.

Euclidean spin 1/2 fields have been constructed several
years ago by Osterwalder et a/>* An important conclusion
reached by these authors was that the construction of the
interacting field models requires a doubling of the fermionic
degrees of freedom. They also showed that the Hermiticity
of the action has to be abandoned in favor of Osterwalder-
Schrader positivity.

We find it expedient to use, throughout this paper a
formalism suggested by Osterwalder and Schrader.?

The Euclidean Fock space & for $pin 1/2 fermions is
given by

= o &1,

n=0

and

g(n) g(l)

where /\ means the n-fold completely antisymmetric tensor
product. The no-particle (vacuum) & consists of elements
that are complex numbers and ‘.
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g( 1 __ g ) g a )’
where each 8”‘;’ is isomorphic to C*® L2(R*). A state in
&) is described by a four-component function of the mo-
mentum p (peR *) labeled by an index j taking on the values
1,...,4. The vacuum is denoted by |0). In the standard fash-
ion we introduce fermion annihilation and creation opera-
tors b,(p) and b?(p) (peR*,j=1,..,4) and antifermion
annihilation and creation operators d;(p) and d}(p)
(peR 4, j = 1,...,4), satisfying the anticommutation relations

{b;(m.b2(p")}={d,(p).d¥ ()} =6,6(p—p"),
(2.1)

with all other anticommutators vanishing. The b *(p) is the
creation operator related to the one-particle space &’ and
d}(p) is the creation operator related to the one-particle
space &1,

For the purposes of analyzing the flat space-time limit of
the Lobachevskian quantum field theory, however, it is more
convenient to introduce polar coordinates in R*: p = pn,
where p>0and nis a unit vector in R 4. The anticommutation
relations (2.1) can be rewritten as

{6,(pm),b2(p'm")} ={d;(p;n),d *(p'in')}

=8;p7%8(p—p)&(n—n'),
(2.2)

where 8°(n —
S3in R4,

Now we will give a transformation law of the creation
and annihilation operators under the inhomogeneous rota-
tion group ISO(4) = R *“@SO(4) (Euclidean group) which
is the semi-direct product of R ¢ cons1dered as an additive
group, and SO(4)

(a,k)eISO(4), aeR, keSO(4).

First we note that an arbitrary element keSO(4) can be
uniquely decomposed as follows;

n’) is the Dirac distribution on the unit sphere

k=xm,
with

(2.3)
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( 1 sy 515, 515

T 145, 1+s, 1+,
_sH 53 555
x =x(8)= 1+s, 145, 145,
5183 525 1— Sg
143, 145, | A
-5 — 5 — 3
and
e+ - —é 2e,e, + 2e3e,
2e,e, — 2e5¢, &+ —e—e
m=m(e) =
2e,e; + 2e,e, 2e,e; — 2e,e,
0 0

where s,e are the unit vectors in R *. The set of all matrices m
given by Eq. (2.5) is a subgroup of SO(4) being isomorpic to
SO(3). [As s easily seen, (2.5) is nothing but the Cayley’s
parametrization of SO(3).] On the Fock space & thereisa
unitary representation U(a,k) of ISO(4) [more precisely: of
the covering group of ISO(4) ], determined by

U(a,k)|0) = |0),

U(a,k)b *(pn)U~"(a,k)
4
=~ PR N b x(p;km)S;; (1),

J=1
U(a,k)d ?(p;n)U~'(a,k)
4
=~ PUnn 3§ S1(r)d ¥ (p;km), (2.6)
=1
[here and in the following we use the scalar product

(p,x) = 2}_  p;x, ] where reSO(3) is a so-called “Wigner
rotation” that is determined by

r=x"'(kn)kx(n). 27N
Furthermore,
m-S(m) (2.8)

is a four-dimensional unitary (reducible) representation of
SO(3)
_ fiec +e,0, 0 )
S(m) _( 0 iec + e,0,/’ (29)
where m is determined by (2.5) and o;, { = 1,2,3 are Pauli
matrices, o, = 1. Note that the representation (2.8) may be
extended to a representation of SO(4), such that

s
1/ 1
S(x) = (L'_"_"A) ) + 54 , (2.10)
2 iso 1

1+s,
where x€S0O(4) is given by (2.4). We have the importan
relations '

S*(x) =8 ""(x)=850x""), (2.11)
¥aS(x)y,s=8""(x), (2.12)
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2], (2.4)
S
J
28183 — 28284 0
2e,e; + 2e e, 0
s 2.5)
Gg+eé—e—¢ 0
0 1
I
S0e)yeS ~Hx) =4, (2.13)
where

0 —io 1 0
= 3 .=1’2: ’ =( )
Y; (iO’J 0 ) (J 3), % o 1

are Euclidean ¥ matrices and § = 3¢_,s,7,.

Having extended the definition of the four-dimensional
representations S (2.8), we can split the rotation matrix ap-
pearing in (2.6) into three factors

S(r) = S(x ™" (kn))S(k)S(x(m)), (2.14)

where r is defined by (2.7). We are now in position to define
two independent Euclidean fields ¢$" and 2, a = 1,...,4.
We set

4
R
¥, (x) = (27) j;l s P m)'

X {b; (p;m) i, (p;n)e? ™
+d}(p;m)v, (p;n)e = #**}p* dp dn,

4

1
=00 5 [ [ G
¥, (x) = (2m) ]Zl ks @+ mh)

X {b}(pm) i, (pm)e — P2

+dj (p;n)%(p;n)eip(n,x)}p:# dp dn, (215)
where R * = {peR:p>0} and dn is the Euclidean measure on
the S>. The #/(p;n),/(p;n), etc. are the Euclidean spinors,
which can be written in the form

#(pn) = Se(m)W, (p),

Y(pn) = S(x(n)hw'_ (p),

#(pn) =w'T (p)S ~'(x(m)),

¥(p;n) = w7 (p)S ~x(n)), (2.16)

ie.,
4
W, (pn) = ﬂzl Saﬁ(x(n))uj-{-ﬁ ),

etc., where w/, (p) (p>0,j=1,...,4) are constant spinors
defined by
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((ip:tmf)l/Z 0
0 (ip £ m)'"?
wl:t (p) e 0 s wz:t ( ) p 0 f
\ o 0
( 0 0
3 ) —_ O 4 _ 0
wi (p - (_lpim)l/z H wi (p)—' 0
\ 0 (—iptm,
The spinors (2.16) satisfy the following relations:
4
S, () s (p5m) = (iph + m,) o
=1
S v () (pn) = — (ipht + my) 4, (2.18)
i=1
which is a consequence of (2.13) and
4
2 Wi (DWW, 5(p) = (Vs £ Mp)ap- (2.19)

j=1
Observe that the Euclidean Dirac fields " and ¢ anticom-
mute as they should do, i.e.,

¥ (x), 95 (x')} =0, forall x,x'eR*. (2.20)

(Nonvanishing anticommutators such as {¢'",#"*} are ir-
relevant objects that play no further role.) These fields trans-
form according to

4
UGa,k)g"(x)U N (a,k) = ¥ S5 (¢ (kx +a),
B=1

4
U(a,k)yP (x) U (ak) = Y ¥ (kx +a)Sg, (k).
B=1
(2.21)
The verification of the covariance properties (2.21) of the
fields are based on the relation (2.14) and the fact that

4 4
S St mw ()= S (mw, . (p),

j=1 a=1

4 4
z S]j(m)wiip(]’) = 2 w’j:a(P)Saﬂ(m)’ (2.22)
=1

a=1
where meSO(3) [see Egs. (2.9) and (2.17)].
The two-point Euclidean Green’s function G Z; (x,x’) is
given by

Gp(xx) =(0|g" (x)¥5 (x')|0)

= (217)“‘J
R+ JS?

Xeip(n,x—x’)ps dp dn

Y A { _x
B (27) |x —x'| Kymylx—xD)
222 Kot lx—x),

x—x|

where K, is the modified Bessel function of the third kind.
In concluding this section, we remark that each sub-
space carries a unitary (highly reducible) representation of
ISO(4) which is equivalent to the induced representation of

(lpli + mf)aﬁ
P’ +my

(2.23)
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(2.17)
)1/2

i

1SO(4) induced, in the sense of Mackey,* by the four-dimen-
sional representation S of SO(4) defined above.

lll. INTERTWINING OPERATORS FOR SO,(4,1)

It is apparent from (2.6) and (2.21) that the formula
(2.15) is essentially a relation between representations of
ISO(4) which are induced by R “@SO(3) and SO(4) sub-
groups of ISO(4). Therefore, if we want to construct a Loba-
chevskian field possessing the property that it goes over into
a Euclidean field in the flat-space limit, it is necessary to
obtain a relation between representations of SO,(4,1) that
are induced by minimal parabolic P (see, below) and maxi-
mal compact K=SO(4) subgroups of SO,(4,1). [We men-
tion that the minimal parabolic subgroup of SO,(4,1) re-
duce to R*@SO(3) subgroup of ISO(4) in the Inénii—
Wigner contraction® of SO,(4,1) with respect SO(4).] For
this purpose we shall write down here (without proofs) the
explicit form of intertwining integrals between the P- and K-
induced realizations of the principal series representation of
SO, (4,1).

Let us start the discussion with the fact that a four-di-
mensional Lobachevskian space A* can be realized as a four-
dimensional hypersurface

§a—E1——£i=1 £&>0 (3.1)
in a five-dimensional pseudo-Euclidean space R *! with the
bilinear form

[&ml=Eom0 — E1m11 — *** — EaMa-

In what follows we shall denote the boundary of A*by B, i.e.,
B = {feA*:[{,£] = 0}. Itis clear from (2.1) that the group
of motions for Lobachevskian space A* is SO,(4,1) which
acts transitively in A*.

A convenient way to parametrize any noncompact
semisimple Lie group is given by means of the Iwasawa de-
composition. This tells us that, if in a noncompact semisim-
ple Lie group G we pick a maximal compact subgroup K and
a suitable Abelian subgroup 4 then there is a nilpotent sub-
group N normalized by 4, such that any group element geG
can be written uniquely as

g = kan, (3.2)

with keK,aeA,neN. For G = SO,(4,1) the elements of maxi-
mal compact subgroup K=S0O(4) are

0 0
k , keSO(4),

1
k=|0 (3.3)
0
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and we may take as the subgroup A the set of all elements in
SO, (4,1) of the form

cosht O sinht
a=a(t) = 0 1 0 , teR. (3.4)
sinht O cosht

Then the elements of nilpotent subgroup N (here is actually
Abelian) are®’

14272y —y12
n=| 'y 1 -y |, yeR3, (3.5)
y/2 ¥y 1—y/2

where yis the column vector (y,0,,p;), y”its transpose, and
¥y =3 4+ 2 +y%. Due to (2.3), the Iwasawa decomposi-
tion (3,2) can be carried further and one has

g = xman, (3.6)
with
1 0 0
x=x(£) =0 x(s) , £=(1,8), seS? (3.7)
0
1 0 0
m=0 m , (3.8)
0

where the matrices % and /7 are determined by Egs. (2.4)
and (2.5), respectively.

Another important parametrization of any element of
SO, (4,1) is due to Cartan, i.e., the element of SO,(4,1) can
be written as

8 =xak, xkeK, aecA, (3.9)

where the matrices x, g, and k are given by Egs. (3.7), (3.4),
and (3.3), respectively.

Obviously, the matrices m given by (3.8) form a sub-
group of SO, (4,1) which we denote by M. The M=S0(3) is
at the same time a centralizer of 4 in K and a normalizer of N
in K. Thus P = MAN s also a subgroup of SO, (4,1) which is
called the minimal parabolic subgroup of SO,(4,1). A finite-
dimensional irreducible unitary representation of P has the
form""

man— y*(a)D’(m), (3.10)

where y*(a) = e~ *, p>0, is a unitary character of 4 and
D/is anirreducible unitary representation of M. The number
Jis an integer for single-valued irreducible unitary represen-
tation of SO(3) and half-odd integer for the double-valued
irreducible unitary representation [i.e., for the faithful irre-
ducible unitary representation of the two-fold covering
group SU(2) of SO(3)].

The principal series of irreducible unitary representa-
tions of SO,(4,1) is parametrized by (p, f) and is obtained
by inducing the representations (3.10) of P to SO,(4,1).
Denoting the Hilbert space for the finite dimensional repre-
sentations D of SO(3) by H, the principal series of repre-
sentations of SO,(4,1) may be realized (in a standard way)
in the Hilbert space L 2(X,H’) of square-integrable functions
over the coset space X = SOy(4,1)/P=K /M =S with val-
ues in H/, and this Hilbert space may be identified with
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L?(S3,H’). The representations T of SO,(4,1) are then
given by the formula$’

T@P(g) fls) =x* T **(a")DI(m~ ") f(s"), (3.11)
wheregeSO,(4,1),seS 3, feL 2(S? H’), and the quantities s’
are determined from

g %(8) =x(§ Yman, {=(1s8), &'=(ls).
(3.12)

To get a more explicit form of the transformation law
(3.11) we use the Cartan decomposition of g (3.9); the fac-
tors aeA4 and keK yield:

(a) T®P(a) £, (s) = [(a§)o] ~***¥f,(s),

L= —jrrds (3.13)
with &' = af /(a)e,
(b) T2 (k) £,(s)
J
= Y DL (x ' )kx(k D)L (s), (3.14)
vE~j

with £’ = kL.

In what follows we will give alternative realizations of
T®? on certain function spaces over SO,(4,1)/
K=AN=A*.

Let feL *(S*H’) and D’ be unitary irreducible repre-
sentations of K=SO(4) which remain irreducible when re-
stricted to SO(3); define

o6 = [ 16617+ oDAug N f0rds,  (315)

where feA*, §=(1,5)eB, and {,=a" ' (£)¢/a™ (£)E)o
Here a(£) is a coset representative for éeA*=AN,

1 1

“ BTE° mogn &
a@ =| & 1 § . t=|&]
1 T 1 _ 3
“ B &6 Boa ™
(3.16)

Then, @(£) are infinitely differentiable functions on A* with
values in H/ and the representations T of SO,(4,1) can
be realized in a space of such functions. In this realization the
representations 7 ? of SO,(4,1) are given by

T®(g)p(£) = Do " (£)ga(g™'ENplg™'6).
(3.17)

Furthermore, (&) are eigenfunctions of the second-order
Casimir operator of SO, (4,1).

Proof of these statements for SO,(2,1) can be found in
Ref. 8.

In fact, the formula (3.15) gives the interrelation be-
tween the P-induced [see Eq. (3.11)] and K-induced [see
Eq. (3.17)] pictures of the principal series.

We note that the verification of Eq. (3.17) is based on
the relations

a” ' ()kE -1
(g e
—1,p —1
=a~1(5)ka(k-'§)x(7‘%), (3.18)
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which are straightforward exercises in matrix multiplica-
tion, and the fact that

a'a(é) =a(a™ '), aed. (3.19)

IV. FREE LOBACHEVSKIAN DIRAC FIELDS

In this section we introduce free Lobachevskian Dirac
fields, which will be related in the flat-space limit to the Eu-
clidean fields constructed in Sec. II.

In analogy to the Euclidean case, we choose the one-
particle Hilbert space for fermions #*" to be

HY =D @ W,

where each #”}’ isisomorphic to C* ® h with 4 denoting the
Hilbert space of all functions F(p;n) on R * X S for which

1Fl=[ [ 1F@m oyspdp dns o,
R+ JS?

where @,,,(p) = |T'(ip +2)/T'(ip + 1/2)|* is the Plan-
cherel weight for the principal series representations
T #/» % [We note that, each subspace #”’ carries a uni-
tary (highly reducible) representation of SO,(4,1) induced
by the representation S (2.8) of SO(4) (see below).] Then
the Lobachevskian Fermi Fock space 77 is defined as usual
to be the Hilbert space completion of the alternating tensor
algebra over 7V

F= o NI,
n=20

The vacuum will be denoted by |0). We introduce (in a stan-
dard fashion) fermion annihilation and creation operators
B, (p;n) ar{d ﬁf(p;n) (peR +,9€S3,j= 1,...,4) and antifer-
mion annihilation and creation operators D;(p;n) and
J

4
=2m?y

W () f f !
=1Jr+Js> \[p* + (m,+ A /2)*

Dt (pm) (peR *,neS?, j=1,...,4) satisfying the anticom-
mutation relation

{B;(pn),B*(p'm)}
={D;(p;n),D*(p';n")}

2
=8, 8(p—pH)&(m—n'), (4.1)

TG+ ip/A)

all other anticommutators vanishing. The B *(p;n) is the
creation operator related to the one-particle space ™}’ and
D *(p;n) is the creation operator related to the one-particle
space #°,

The Fock space # carry a unitary representation U(g)
of SO, (4,1) defined by

U(g){0) = |0),
U(g)B}(pm)U~'(g)
4
= [(80)o] =2 #* Y BX(pin')S; (m),

;=1

U(@)DHpmU™'(g)

4
= [(85)o] "2 *** ¥ S;'(m)D¥(pm),

S=1

4.2)

where

8x(8) = x(§"Yman, {=(l,n),
with notation as in Sec. IIL.

We are now prepared to define two independent Loba-

chevskian Dirac fields W." and ¥*, u = 1,...,4. Equations
(2.15) and (3.15) tell us to do this by setting

¢'=(1,n'),

{B;(pm) U7, (pin,) [§,£ 1772~ %* + DF(pm)V, (pim,)

X[£€]1~ Y2+ P2 + ip/A)/T(1/2 + ip/A) dp dn,

1

4
wo-ar i f
u (§) 2m) j;l r+ Js \/p2+(mf+'1/2)2

X [£,E]17¥2 %2} (2 + ip/A)/T(1/2 + ip/A) |*dp dn,

with
U'(pin, ) = S(x(E))W, (D),
Vipm,) = Ste(E))W_ (p),
Uiippn,) = WIT (p)S ~'(x(Lp)),
Viom,) = WIT (p)S ~'(x(L)),
Le.,

4
U‘;t (P§n§) = Z] Spv(x(gg))Wj+ V(P)9

etc., where

Ce=a ()M () E=(Lm), Le=(1,n,)

and
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{B*(pm) Ui, (o, ) (6,612 + D, (pim) V", (pim)

(4.3)
r
( lPi(m,+/1/2)]”2\
W' (p) = 0 ,
\ : /
( + /1/2 '/2\
o)
( 0
0
W3
+ 0= \[ lpi(m,+/l/2)]”2’
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0
0
0
[—ipt (m,+A72)]"?

It follows from (4.2) that Lobachevskian Dirac fields
transform as [cf. Eq. (3.17)]

W (p)=

V(YD (HU'(g)

4
= Y Vi(g£)S,.(a " (g&)ga(d)).
v=1

In Appendix C we show that the Lobachevskian Dirac fields
are actually anticommutative, i.e.,

UYL (U (g) (PP (£} =0, forall §,&'eA. (4.4)
4 . . , .
- S = Ha~gt)ga (£ (gs), The two-point Lobachevskian Green’s function
vgl # sb)gals & GL(£,£") is defined by
]
GL (££) =[P (HPP(£1]0)
A 3 4 1 S ( P
= A% ) +m,+A1/2 T
2’ T,;1L+J;’p2+ (my 4 A/2)7 (£:))ipy, 5 ) s
- —3/2—§ " - i I'(2+ip/A) |?
XS vl %( ) , 3/2 —ip/A , 3724 ip/A d
o (2 (G NNEE ] (56 TO2 5 /)
A2 1 5 ) i
- (277_)4 T‘BZ:]L+L‘ p2+ (mf+i/2)2 ;H‘(x(g))(lp7/4+mf+ )Tﬁ
_ - = ; L2 +ip/A) |?
XS 5! = AC) Bl (el P LA SR4 dn, 4.5
g ((EEE] T2 /) n (4.5)
!
where where
[ —lg= -y o — 1 '
{E =a (;—)go/(a (—)g)o: a (—-)—a (§ )a(g)) ;;E%(n)é-, §E(1,l’l)
T=a(E2)E, ==(1,0,0,0,0).
The last equality in (4.5) is based on quasi-invariance of the We now use the relations
measure dn. e
Let us now calculate the explicit form of G £(£,£’). For x(x(n)g)x—‘( a 1 (—.:)x('r])é' )
this purpose, we introduce polar coordinates in A*: . (@™ (E)x(m)&)o
A'DE = (cosh Arssinh Ar), seS3, 0<r< w. ' iy
=2 (n)x( )x“'( )x"( ), (4.8)
Then mxe (a™ ') (@ 'n),
a(E) =x(pax~Ya 'n/(a"'5)), (4.6)
where which is a consequence of (3.18) in the special case
7=(l,8), a=a(ir)ed. k = x(n) and

[The Eq. (4.6) is due to the Cartan decomposition.] We
insert (4.6) and make a change in the variable of integration
over. This gives

Gi(E€) =

A ¢ 1

2m)* az; ! L L P+ (my+A/2)?

XS, (e (ENipYa+ms+A/2) 5
%})—5 2dp dn,

4.7
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y f a” ' (E)x(n)é
= (x(m)&)x ((a—l(s)x(ﬂ)§)o)

o, -1 _f a”'¢ ) —l( a'n )
x= ()= (§)x ((a“g')o % T
(4.9)

Relation (4.9) follows from the relation (4.8) and the fact

2 (m)€) = x(1)%*(§) % (7). (4.10)
Thus we obtain
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a”'¢

GLEE) = (ZF)J ! 'an“(x(n))S“(x(;))S"("((_—_‘53))3 _'("( (Z—-‘:’)o»

k+Jss PP+ (m, 4+ 4/2)% |
+ (my+ 2 /DSeyISEeENS o

2

rQ+ip/d) |?,
T(1/2 + ip/A)

In deriving Eq. (4.11) we have used the relation

S(")1’4 = 7’43—'(76),

[see Eq. (2.12) ] and the fact that S( - ) is a representation of
SO4).
We now introduce the polar coordinates on S* given by

n = (sin B sin & sin @, sin Bsin 8 cos @,
sin 8 cos 6,cos ),
0<B.9<m, O<Kp<2m.
Then the Euclidean measure on S * has the form
dn = sin’ Bsin 8 df d6 dgp.
After integration over the angles 6 and ¢ we find that

GLesy =22 f ) !
(2m)PJo PP+ (my+4/2)?
-1
xiors —Hocems (o =) )
77)0
+ (m;+ A /2)S8(x(7))
-1
xS“‘(x((:_—l;’)o))le, (4.12)
where

X (cosh Ar — cos Bsinh Ar) —2*+ " *sin? B dB,
(4.13)

f,sf (—sinh£+cosh
o 2

J (cosh——smh%cosﬁ)

X (cosh Ar — cos Bsinh Ar) —2* "*sin? B dp.
(4.14)

In Appendix A we explicitly evaluate the integrals .# | and
I,
They are

7 T(—=1+ip/A)
sinh Ar L (ip/A)

7 D[(—1+4ip/R)
sinh Ar T'(ip/A)
where P!, (z) is the generalized Legendre function of the
first kind (see Appendix A).

Finally, the remaining p integral can be evaluated in
terms of generalized Legendre function of the second kind
Q.. (2) (see Appendix B):

= P21 %% (cosh Ar),

= P \%F ¥2(cosh Ar),
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)P (e sat e

(4.11)

G (66
24> T(n/A+3/2)

- S
(2m)? sinh Ar T(m /A — 1/2) ” Cc(m)7a

-1
xS (x( (:‘17;’) ))] Q;;!z/.‘-— 12 (cosh A7)
o uv

+ [S(x("l))s—l(x(T%))]w

X035 1/2(00311'1")}

(4.15)

Furthermore we check that the Euclidean Green’s function
indeed a limiting case of the Lobachevskian Green’s func-
tion, i.e., that

Gf;v(g’g') - va(xyx'))
(A-0)
with |x — x'| = 7, since

11m Q.7 "/*(coshAr) =K,_,(m 1)

[see (B9) I-

After all, it remains to be shown that the Lobachevskian
Dirac fields (4.3) goes over in the flat-space limit into the
Euclidean Dirac fields (2.15). To do so, it is convenient to
introduce an horospherical coordinate x,,, u = 1,...,4 on At

§0= coshix4 + (12/2)x2elx‘,

& =Ax, i=123,

54 = Sinh ix4 + (A 2/2)x2e4x‘,
where — o0 <X, < o0 and x? = x} + x; + x3.

First we denote that the discussion of the Lobachevski-
an plane wave factor [£,£ ] ~*%+ #/4is analogous here to the

one given for the scalar case leading, in the limit A -0, to the
plane wave factor exp[ip(n,x)], i.e.,

lim{£,]1=>** %" = explip(n,x)],

(see Ref. 1). Hence using the relations
lima(f) =1
A-0
and
T'(2+ip/A) |2
(172 +ip/A)
it follows that the Lobachevskian Dirac fields (4.3) reduce

in the flat-space limit A -0 to the Euclidean Dirac fields
(2.15).

lim A2
-0

=p3,
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APPENDIX A: EVALUATION OF THE INTEGRALS (4.13)
AND (4.14)

In this appendix we shall evaluate the following inte-
grals:

flEJ (— sinh&+ coshﬁcosﬂ )(cosh Ar
o 2 2
— cos Bsinh Ar) ~2+%%5in2 B dB,

and
szJ (cosh 4—{ — sinh Q cos ,B)(cosh Ar
o 2 2
— cos Bsinh Ar) — 2+ #%in? B dB.

The calculation is based on the formula [see Eq. 10.3.7(1) of
Ref. 9]

fﬂ(cosh o — cos B sinh w) °C } (cos B)sin’ 8 df

(1]
_ (= DT 3/ + 1)
k(o —k+1)
Xsinh~! @P ! *(cosh ),

where C7'(z) and P% (z) are the Gegenbauer polynomials
and the associated Legendre functions of the first kind, re-
spectively.'? By making use of the relations

Ci(cosB) =1, C|(cosB)=2cosp,

it is now straightforward to eavluate the integrals .#, and
# ,; we obtain

F,=msinh™! ir[ — sinh %’ P 14 pra(cosh Ar)

+Cosh££(—:——-Lp/ll)P :%.g.ip/ﬂ.(COSh/ir)] ’

2 T(—2+ip/A)
(AD)

and
&, =msinh™! ir{cosh %’P Z 14 ipa(cosh Ar)

—singn L Lk /) p oz (cosh dr) }

2 T(—2+ip/A)
(A2)

However, the integrals .# , and .#, can also be expressed in
terms of the functions P/, (z).° (The explicit definitions of
these functions will be given below.) Indeed, using the rela-
tion [see Eq. 6.3.5(5) of Ref. 9]

rd+1n "

and the recurrence formulas [see Egs. 6.5.6(7) and 6.5.6(8)
of Ref. 9]

P7(cosh w) = o (cosh @),

P+ 12, 1,2 (cosh w) = cosh % P!, (cosh @)

+ sinh%PﬁH o(cosha)
and
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P~ 172 (cosh @) =sinh % P! (cosh w)

+ cosh %Pf,,+ 1.0 (cosh @),

with / a complex number, and m integer, we find
7w T(—=14+ip/A)

= P2+ ipla hA
sinh Ar F(ip//l) 3/2,- 172 (cos r

(A3)

and

T I‘(—1+ip//n —1/2+ ip/A
= P P *(cosh Ar).
sinhAr  T(ip/A) i )

2
(A4)

Here we have used the symmetry relation [see Eq. 6.3.6(1)
of Ref. 9] .

PL.(2)=P' (2).

—m—n (A5)

The functions P’ (z) (with z= cosh w, / a complex
number, and m and »# which are simultaneously either inte-
gers or half odd integers) have been discussed extensively in
the book by Vilenkin referred to previously [see Chap. 6 of
Ref. 9]. They can be expressed in terms of hypergeometric

functions ,F,:

Pinn(z)= F{+1—n) 2-"
TU+1—m) T(1+m—n)
X(z__ 1)(m—n)/2(z+ 1)(m+n)/2
X Fim—=Im+1+11+m-—n(1—-2)/2)
(m>n) (A6)
and
Pl y=TU+l4+m 277

F+1+m) T(1+n—m)
X (2 — 1)(=m72(z 4 1)n+m2
X Fi(n—In+Il+ L1 4+n—m(1 —2)/2)
(npm). (A7)
We shall call the function P/, (z) a generalized Legendre
function of the first kind, since
P/(2) = Plo(2), (A8)

where P, (z) is the Legendre function of the first kind.'°
In concluding this appendix we give some of the proper-
ties of the P!, (z) which we need later:

(a) f T P2+ e(z)P = V2= b(£)p tanh(p + ie)dp
0

=6(z—1), (A9)
if M =0 or 1/2, where
Mo {